An Assessment of State-of-the-Art Mean Sea Surface and Geoid Models of the Arctic Ocean: Implications for Sea Ice Freeboard Retrieval

Henriette Skourup, Sinéad Louise Farrell, Stefan Hendricks, Robert Ricker, Thomas W. K. Armitage, Andy Ridout, Ole Baltazar Andersen, Christian Haas, Steven Baker

    Research output: Contribution to journalJournal articleResearchpeer-review

    646 Downloads (Pure)

    Abstract

    State-of-the-art Arctic Ocean mean sea surface (MSS) models and global geoid models (GGMs) are used to support sea ice freeboard estimation from satellite altimeters, as well as in oceanographic studies such as mapping sea level anomalies and mean dynamic ocean topography. However, errors in a given model in the high frequency domain, primarily due to unresolved gravity features, can result in errors in the estimated along-track freeboard. These errors are exacerbated in areas with a sparse lead distribution in consolidated ice pack conditions. Additionally model errors can impact ocean geostrophic currents, derived from satellite altimeter data, while remaining biases in these models may impact longer-term, multi-sensor oceanographic time-series of sea level change in the Arctic. This study focuses on an assessment of five state-of-the-art Arctic MSS models (UCL13/04, DTU15/13/10) and a commonly used GGM (EGM2008). We describe errors due to unresolved gravity features, inter-satellite biases, and remaining satellite orbit errors, and their impact on the derivation of sea ice freeboard. The latest MSS models, incorporating CryoSat-2 sea surface height measurements, show improved definition of gravity features, such as the Gakkel Ridge. The standard deviation between models ranges 0.03-0.25 m. The impact of remaining MSS/GGM errors on freeboard retrieval can reach several decimeters in parts of the Arctic. While the maximum observed freeboard difference found in the central Arctic was 0.59 m (UCL13 MSS minus EGM2008 GGM), the standard deviation in freeboard differences is 0.03-0.06 m.
    Original languageEnglish
    JournalJournal of Geophysical Research: Oceans
    Volume122
    Issue number11
    Pages (from-to)8593–8613
    ISSN2169-9380
    DOIs
    Publication statusPublished - 2017

    Bibliographical note

    Copyright: 2017. The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

    Fingerprint

    Dive into the research topics of 'An Assessment of State-of-the-Art Mean Sea Surface and Geoid Models of the Arctic Ocean: Implications for Sea Ice Freeboard Retrieval'. Together they form a unique fingerprint.

    Cite this