An application of multigrain approaches to the structural solution of grains from polycrystalline samples

The overlap of diffraction spots from different grains was investigated to understand the influence of experimental factors on the x-ray diffraction data quality and to optimize the experimental parameters for data collection on polycrystalline samples. Diffraction patterns for photoactive polycrystals were indexed and sorted with respect to grains using multigrain approaches. The indexing of diffraction spots and the identification of grains for tetrathiafulvalene-p-chloranil samples were performed using the ImageD11, GrainSpotter, GRAINDEX and Cell_now programs. In many cases, comparison of the results from these programs shows good agreement. For the individual grains from polycrystalline samples, the crystal structure was solved and refined using the SHELXTL program. After the structural refinement of the grains, the best and the average R1 values were 1.93% and 2.06%, respectively, which are on a comparable resolution level with that obtained from the x-ray single crystal measurements.

General information
Publication status: Published
Organisations: Department of Physics, Neutrons and X-rays for Materials Physics, National University of Mongolia, European Synchrotron Radiation Facility, Max Planck Institute for Biophysical Chemistry
Corresponding author: Davaasambuu, J.
Contributors: Davaasambuu, J., Wright, J., Soerensen, H. O., Schmidt, S., Poulsen, H. F., Techert, S.
Number of pages: 5
Pages: 119-123
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Solid State Phenomena
Volume: 288
ISSN (Print): 1012-0394
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
Original language: English
Keywords: Multigrain approach, Photo-induced phase transition, Polycrystalline sample, X-ray diffraction
DOIs:
10.4028/www.scientific.net/SSP.288.119
Source: Scopus
Source ID: 85064227610
Research output: Contribution to journal › Conference article – Annual report year: 2019 › Research › peer-review