Abstract
An adaptive backstepping based virtual inertial controller is encompassed to emulate the inertial characteristics of a synchronous machine in AC grid for a DC microgrid with various sources. This paper focuses on associating both AC and DC dynamics by estimating the angular momentum inertia and damping coefficient of the grid with the help of a voltage droop control used in the DC side. Moreover, a well-trodden power management strategy in the DC side under normal circumstances along with transition from inversion to rectification mode is proposed to increase the operational reliability. The robust performance of the proposed control strategy is tested under both simulated and experimental conditions.
Original language | English |
---|---|
Title of host publication | Proceedings of 2020 IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems |
Publisher | IEEE |
Publication date | 2020 |
Pages | 85-90 |
ISBN (Print) | 9781728169897 |
DOIs | |
Publication status | Published - 2020 |
Event | 2020 IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems - Virtual event, Dubrovnik, Croatia Duration: 28 Sept 2020 → 1 Oct 2020 https://ieeexplore.ieee.org/xpl/conhome/9244275/proceeding |
Conference
Conference | 2020 IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems |
---|---|
Location | Virtual event |
Country/Territory | Croatia |
City | Dubrovnik |
Period | 28/09/2020 → 01/10/2020 |
Internet address |
Keywords
- DC microgrids
- Virtual inertia
- Adaptive backstepping
- Grid connected systems