Amplitude equation and long-range interactions in underwater sand ripples in one dimension

Teis Schnipper, Keith Mertens, Clive Ellegaard, Tomas Bohr

Research output: Contribution to journalJournal articleResearchpeer-review

528 Downloads (Pure)


We present an amplitude equation for sand ripples under oscillatory flow in a situation where the sand is moving in a narrow channel and the height profile is practically one dimensional. The equation has the form h(t)=epsilon-(h-(h) over bar) + ((h(x))(2)-1)h(xx)-h(xxxx) + delta((h(x))(2))(xx) which, due to the first term, is neither completely local (it has long-range coupling through the average height (h) over bar) nor has local sand conservation. We argue that this is reasonable and show that the equation compares well with experimental observations in narrow channels. We focus in particular on the so-called doubling transition, a secondary instability caused by the sudden decrease in the amplitude of the water motion, leading to the appearance of a new ripple in each trough. This transition is well reproduced for sufficiently large delta (asymmetry between trough and crest). We finally present surprising experimental results showing that long-range coupling is indeed seen in the initial details of the doubling transition, where in fact two small ripples are initially formed, followed by global symmetry breaking removing one of them.
Original languageEnglish
JournalPhysical Review E
Issue number4
Pages (from-to)047301
Publication statusPublished - 2008

Bibliographical note

Copyright 2008 American Physical Society




Dive into the research topics of 'Amplitude equation and long-range interactions in underwater sand ripples in one dimension'. Together they form a unique fingerprint.

Cite this