Abstract
Removing ammonia (NH4+-N) and recalcitrant organics from low carbon/nitrogen wastewater requires a large amount of chemical reagents and energy. This work reports a new advanced oxidation process to remove recalcitrant organics with the assistant of NH4+-N in low carbon/nitrogen wastewater. Specifically, NH4+-N in wastewater mediated Fe(II)/Fe(III) cycle for the activation of oxidation reagent (e.g., H2O2) (ammonia-mediated AOP) to improve the removal of recalcitrant organics. In ammonia-mediated AOP, NH4+-N, recalcitrant organics, and PO4-P in wastewater were removed by 88.2%, 80.5% and 84%, respectively, with a low H2O2 consuming of only 5 mg/L. The removal efficiency of recalcitrant organics in the ammonia-mediated AOP increased as the concentration of NH4+-N in wastewater increased. Recalcitrant organics can be removed with an efficiency of 74∼82%, when the influent pH was 6∼6.8. This work provides a new and cost-effective approach to drive the iron cycle in Fenton treatment using NH4+-N from wastewater as mediator.
| Original language | English |
|---|---|
| Article number | 120295 |
| Journal | Water Research |
| Volume | 242 |
| Number of pages | 9 |
| ISSN | 0043-1354 |
| DOIs | |
| Publication status | Published - 2023 |
Keywords
- Fenton treatment
- Feammox
- Recalcitrant organic
- NH4+-N
- Carbon neutral