Alloy design as an inverse problem of cluster expansion models

Central to a lattice model of an alloy system is the description of the energy of a given atomic configuration, which can be conveniently developed through a cluster expansion. Given a specific cluster expansion, the ground state of the lattice model at 0 K can be solved by finding the configuration of solutes that minimizes the energy of the system. In this paper, we develop a method for solving the inverse lattice problem, where, given a broad class of potential, we find the ground states for all possible values of the effective cluster interaction energies. To do so, we formulate the inverse problem in terms of energetically distinct configurations, using a constraint satisfaction model to identify constructible configurations, and show that a convex hull can be used to identify ground states. To demonstrate the approach, we solve for all ground states for a binary alloy in a 2D hexagonal lattice both with and without an interface, based on pairwise interactions.

General information
Publication status: Published
Organisations: Department of Physics, Theoretical Atomic-scale Physics, Neutrons and X-rays for Materials Physics, Massachusetts Institute of Technology
Contributors: Larsen, P. M., Kalidindi, A. R., Schmidt, S., Schuh, C. A.
Number of pages: 7
Pages: 254-260
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Acta Materialia
Volume: 139
ISSN (Print): 1359-6454
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 6.18 SJR 3.263 SNIP 2.737
Web of Science (2017): Impact factor 6.036
Web of Science (2017): Indexed yes
Original language: English
Keywords: Alloys, Cluster expansion, Computational thermodynamics, Microstructure design, Phase diagrams
DOIs:
10.1016/j.actamat.2017.08.008
Source: FindIt
Source-ID: 2390824329
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review