All-Optical Frequency Modulated High Pressure MEMS Sensor for Remote and Distributed Sensing - DTU Orbit (07/10/2019)

All-Optical Frequency Modulated High Pressure MEMS Sensor for Remote and Distributed Sensing

We present the design, fabrication and characterization of a new all-optical frequency modulated pressure sensor. Using the tangential strain in a circular membrane, a waveguide with an integrated nanoscale Bragg grating is strained longitudinally proportional to the applied pressure causing a shift in the Bragg wavelength. The simple and robust design combined with the small chip area of 1×1.8 mm2 makes the sensor ideally suited for remote and distributed sensing in harsh environments and where miniaturized sensors are required. The sensor is designed for high pressure applications up to 350 bar and with a sensitivity of 4.8 pm/bar (i.e., 350×10^5 Pa and 4.8×10^{-5} pm/Pa, respectively).

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology, MEMS-AppliedSensors Group, MicroElectroMechanical Systems Section, Center for Individual Nanoparticle Functionality
Contributors: Reck, K., Thomsen, E. V., Hansen, O.
Pages: 10615
Publication date: 2011
Peer-reviewed: Yes

Publication information
Journal: Sensors
Volume: 11
Issue number: 11
ISSN (Print): 1424-8220
Ratings:
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.44 SJR 0.641 SNIP 1.462
Web of Science (2011): Impact factor 1.739
ISI indexed (2011): ISI indexed yes
Original language: English
Keywords: MEMS, Optical Sensor, Bragg Grating
Electronic versions:
sensors-11-10615.pdf
DOIs:
10.3390/s111110615
Source: orbit
Source ID: 313135
Research output: Contribution to journal › Journal article – Annual report year: 2011 › Research › peer-review