All-fiber photon-pair source at telecom wavelengths

Single photon sources are a key element for quantum computing, quantum key distribution (QKD) and quantum communications. In particular, producing single photons at telecommunications wavelengths is valuable for QKD protocols and would enable realizing the quantum internet. The preferred method for their generation has long been spontaneous down conversion in bulk crystals, which suffers from connection loss to fiber networks. In-fiber spontaneous four-wave mixing provides a viable alternative as a photon pair source due to being compatible with existing fiber networks. We present an all-fiber photon pair source based on degenerate four-wave mixing in a 400 m Highly-Nonlinear fiber, with signal and idler wavelengths generated at 1552.5 nm and 1557 nm respectively. The source consists of CW pump laser operating at 1554.75 nm, which is slightly detuned from the zero group velocity dispersion wavelength into the normal dispersion regime. After pair generation in the highly-nonlinear fiber, three arrayed waveguide gratings are employed to spatially separate signal and idler, and provides a 120 dB pump power reduction. Firstly the source is modelled and experimentally characterized in the well known classical regime of stimulated four-wave mixing. The effect of fiber cooling on spontaneous Raman scattering is modelled and characterized, and a 30% reduction in spontaneous emission is found when cooling the fiber to −77 C. In the low power regime the coincidence to accidental count ratio is simulated and measured. An increase in the coincidence to accidental count ratio is observed when cooling the fiber.