Abstract
We present a simple and cheap method for fabrication of silica nanofluidic devices for single-molecule studies. By imprinting sol-gel materials with a multi-level stamp comprising micro- and nanofeatures, channels of different depth are produced in a single process step. Calcination of the imprinted hybrid sol-gel material produces purely inorganic silica, which has very low autofluorescence and can be fusion bonded to a glass lid. Compared to top-down processing of fused silica or silicon substrates, imprint of sol-gel silica enables fabrication of high-quality nanofluidic devices without expensive high-vacuum lithography and etching techniques. The applicability of the fabricated device for single-molecule studies is demonstrated by measuring the extension of DNA molecules of different lengths confined in the nanochannels.
Original language | English |
---|---|
Journal | Lab on a Chip |
Volume | 12 |
Issue number | 2 |
Pages (from-to) | 262-267 |
ISSN | 1473-0197 |
DOIs | |
Publication status | Published - 2011 |