All-optical signal processing of OTDM and OFDM signals based on time-domain Optical Fourier Transformation

Anders Clausen, Pengyu Guan, Hans Christian Hansen Mulvad, Kasper Meldgaard Røge, Michael Galili, Leif Katsuo Oxenløwe

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

    2 Downloads (Pure)

    Abstract

    All-optical time-domain Optical Fourier Transformation utilised for signal processing of ultra-high-speed OTDM signals and OFDM signals will be presented.
    Original languageEnglish
    Title of host publicationProceedings of the 16th International Conference on Transparent Optical Networks
    PublisherIEEE
    Publication date2014
    Pages1-4
    ISBN (Print)9781479956012
    DOIs
    Publication statusPublished - 2014
    Event16th International Conference on Transparent Optical Networks - Graz, Austria
    Duration: 6 Jul 201410 Jul 2014
    Conference number: 16
    http://www.nit.eu/icton2014

    Conference

    Conference16th International Conference on Transparent Optical Networks
    Number16
    Country/TerritoryAustria
    CityGraz
    Period06/07/201410/07/2014
    Internet address

    Keywords

    • Fourier transforms
    • OFDM modulation
    • optical information processing
    • optical modulation
    • time division multiplexing
    • time-domain analysis
    • Communication, Networking and Broadcast Technologies
    • Components, Circuits, Devices and Systems
    • Engineered Materials, Dielectrics and Plasmas
    • Photonics and Electrooptics
    • all-optical signal processing
    • all-optical time-domain optical Fourier transformation
    • Integrated optics
    • OFDM
    • OFDM signal
    • Optical fibers
    • Optical filters
    • Optical Fourier Transformation
    • Optical signal processing
    • OTDM
    • OTDM signal
    • time-lens
    • Wavelength division multiplexing

    Fingerprint

    Dive into the research topics of 'All-optical signal processing of OTDM and OFDM signals based on time-domain Optical Fourier Transformation'. Together they form a unique fingerprint.

    Cite this