Affibody scaffolds improve sesquiterpene production in Saccharomyces cerevisiae

Affibody scaffolds improve sesquiterpene production in Saccharomyces cerevisiae

Enzyme fusions have been widely used as a tool in metabolic engineering to increase pathway efficiency by reducing substrate loss and accumulation of toxic intermediates. Alternatively, enzymes can be co-localized through attachment to a synthetic scaffold via non-covalent interactions. Here we describe the use of affibodies for enzyme tagging and scaffolding. The scaffolding is based on the recognition of affibodies to their anti-idiotypic partners in vivo, and was first employed for co-localization of farnesyl diphosphate synthase and farnesene synthase in *S. cerevisiae*. Different parameters were modulated to improve the system, and the enzyme:scaffold ratio was most critical for its functionality. Ultimately, the yield of farnesene on glucose Y_{SFar} could be improved by 135% in fed-batch cultivations using a 2-site affibody scaffold. The scaffolding strategy was then extended to a three-enzyme polyhydroxybutyrate (PHB) pathway, heterologously expressed in *E. coli*. Within a narrow range of enzyme and scaffold induction, the affibody tagging and scaffolding increased PHB production 7-fold. This work demonstrates how the versatile affibody can be used for metabolic engineering purposes.

General information
Publication status: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Yeast Cell Factories, Chalmers University of Technology, Royal Institute of Technology
Contributors: Tippmann, S., Anfelt, J., David, F., Rand, J. M., Siewers, V., Uhlén, M., Nielsen, J., Hudson, E. P.
Number of pages: 10
Pages: 19-28
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: A C S Synthetic Biology
Volume: 6
Issue number: 1
ISSN (Print): 2161-5063
Ratings:
Scopus rating (2017): CiteScore 4.86 SJR 2.625 SNIP 1.123
Web of Science (2017): Impact factor 5.316
Web of Science (2017): Indexed yes
Original language: English
Keywords: Affibodies, Biofuels, Isoprenoids, Metabolic engineering, PHB, Yeast
DOIs:
10.1021/acssynbio.6b00109
Source: FindIt
Source ID: 2342173233
Research output: Contribution to journal › Letter – Annual report year: 2016 › Research › peer-review