Abstract
This work describes advanced numerical aero-hydro-servo-elastic simulations of a floating offshore wind turbine using a multi-body vortex-particle based solver. The floating offshore substructure considered in this study is the spar-buoy as described in Phase IV of the Offshore Code Comparison Collaboration (OC3) project [1]. The wind turbine blades and rotor-wake aerodynamics are modeled using the lifting-line theory and particle-mesh approaches, respectively. The wind turbine structure and foundation are modeled using a finite-element and muti-body system approach. Last, hydrodynamics are modeled using Airy wave theory. To calculate the forces acting on the structure, Morison’s equation is used for the floating spar-buoy. The developed aero-hydro-servo-elastic tool represents a more advanced approach to traditional tools used in industry based on blade-element momentum (BEM) for simulating floating offshore wind turbine performance.
Original language | English |
---|---|
Publication date | 2019 |
Publication status | Published - 2019 |
Event | WindEurope Offshore 2019: Our energy, our future - Bella Center, Copenhagen, Denmark Duration: 26 Nov 2019 → 28 Nov 2019 http://windeurope.org/offshore2019 |
Conference
Conference | WindEurope Offshore 2019 |
---|---|
Location | Bella Center |
Country/Territory | Denmark |
City | Copenhagen |
Period | 26/11/2019 → 28/11/2019 |
Internet address |