TY - JOUR
T1 - Advancements in Heavy Metal Stabilization
T2 - A Comparative Study on Zinc Immobilization in Glass-Portland Cement Binders
AU - Bouchikhi, Abdelhadi
AU - el Mahdi Safhi, Amine
AU - Maherzi, Walid
AU - Mamindy-Pajany, Yannick
AU - Kunther, Wolfgang
AU - Benzerzour, Mahfoud
AU - Abriak, Nor-Edine
PY - 2024
Y1 - 2024
N2 - Recent literature has exhibited a growing interest in the utilization of ground glass powder (GP) as a supplementary cementitious material (SCM). Yet, the application of SCMs in stabilizing heavy metallic and metalloid elements remains underexplored. This research zeroes in on zinc stabilization using a binder amalgam of GP and ordinary Portland cement (OPC). This study juxtaposes the stability of zinc in a recomposed binder consisting of 30% GP and 70% OPC (denoted as 30GP-M) against a reference binder of 100% CEM I 52.5 N (labeled reference mortar, RM) across curing intervals of 1, 28, and 90 days. Remarkably, the findings indicate a heightened kinetic immobilization of Zn at 90 days in the presence of GP—surging up to 40% in contrast to RM. Advanced microstructural analyses delineate the stabilization locales for Zn, including on the periphery of hydrated C3S particles (Zn–C3S), within GP-reactive sites (Si*–O–Zn), and amid C–S–H gel structures, i.e., (C/Zn)–S–H. A matrix with 30% GP bolsters the hydration process of C3S vis-à-vis the RM matrix. Probing deeper, the microstructural characterization underscores GP’s prowess in Zn immobilization, particularly at the interaction zone with the paste. In the Zn milieu, it was discerning a transmutation—some products born from the GP–Portlandite reaction morph into GP–calcium–zincate.
AB - Recent literature has exhibited a growing interest in the utilization of ground glass powder (GP) as a supplementary cementitious material (SCM). Yet, the application of SCMs in stabilizing heavy metallic and metalloid elements remains underexplored. This research zeroes in on zinc stabilization using a binder amalgam of GP and ordinary Portland cement (OPC). This study juxtaposes the stability of zinc in a recomposed binder consisting of 30% GP and 70% OPC (denoted as 30GP-M) against a reference binder of 100% CEM I 52.5 N (labeled reference mortar, RM) across curing intervals of 1, 28, and 90 days. Remarkably, the findings indicate a heightened kinetic immobilization of Zn at 90 days in the presence of GP—surging up to 40% in contrast to RM. Advanced microstructural analyses delineate the stabilization locales for Zn, including on the periphery of hydrated C3S particles (Zn–C3S), within GP-reactive sites (Si*–O–Zn), and amid C–S–H gel structures, i.e., (C/Zn)–S–H. A matrix with 30% GP bolsters the hydration process of C3S vis-à-vis the RM matrix. Probing deeper, the microstructural characterization underscores GP’s prowess in Zn immobilization, particularly at the interaction zone with the paste. In the Zn milieu, it was discerning a transmutation—some products born from the GP–Portlandite reaction morph into GP–calcium–zincate.
KW - Zinc stabilization
KW - Ground glass
KW - Supplementary cementitious materials
KW - Sorption isotherms
U2 - 10.3390/ma17122867
DO - 10.3390/ma17122867
M3 - Journal article
C2 - 38930239
SN - 1996-1944
VL - 17
JO - Materials
JF - Materials
IS - 12
M1 - 2867
ER -