Advanced Time Approach of FW-H Equations for Predicting Noise

Si Haiqing, Shi Yan, Wen Zhong Shen, Wu Xiaojun

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

An advanced time approach of Ffowcs Williams-Hawkings (FW-H) acoustic analogy is developed, and the integral equations and integral solution of FW-H acoustic analogy are derived. Compared with the retarded time approach, the transcendental equation need not to be solved in the advanced time approach, on the other hand, computational cost can be saved using the approach due to no demand of pre-storing lots of aerodynamic data. To further validate the efficiency of the advanced time approach for predicting noise, unsteady flow fields are firstly simulated for air around square cylinder and NACA0012 airfoil, then unsteady calculations are used as input for FW-H equations, and numerical predictions are made for noise induced by vortex shedding of square cylinder and NACA0012 airfoil using the advanced time approach. Finally, the retarded time approach and the advanced time approach are compared.
Original languageEnglish
JournalNanjing Hangkong Hangtian Daxue Xuebao
Volume45
Issue number6
Pages (from-to)807-812
Number of pages6
ISSN1005-2615
Publication statusPublished - 2013

Keywords

  • INTEGRAL equations
  • FW-H equations
  • Acoustic analogy method
  • Retarded time approach
  • Advanced time approach

Fingerprint Dive into the research topics of 'Advanced Time Approach of FW-H Equations for Predicting Noise'. Together they form a unique fingerprint.

Cite this