TY - JOUR
T1 - Adsorption and Interfacial Electron Transfer of Saccharomyces Cerevisiae
T2 - Yeast Cytochrome c Monolayers on Au(111) Electrodes
AU - Hansen, Allan Glargaard
AU - Boisen, Anja
AU - Nielsen, Jens Ulrik
AU - Wackerbarth, Hainer
AU - Chorkendorff, Ib
AU - Andersen, Jens Enevold Thaulov
AU - Zhang, Jingdong
AU - Ulstrup, Jens
PY - 2003
Y1 - 2003
N2 - We have studied the adsorption and electron-transfer dynamics of Saccharomyces cerevisiae (yeast) iso-l-cytochrome c adsorbed on Au(lll) electrodes in aqueous phosphate buffer media. This cytochrome possesses a thiol group dos e to the protein surface (Cysl02) suitable for linking the protein to gold without drastic protein unfolding. A comprehensive approach, based on linear sweep and differential pulse voltammetry, capacitance measurements, X-ray photoelectron spectroscopy (XPS) , in situscanning tunneling microscopy (STM), and microcantilever sensor (MCS) techniques has been used. The voltammetric data display a thiol reductive desorption signal corresponding to dase to monolayer coverage. Reductive desorption is also reflected in a capacitance peak. Voltammetric signals from the heme group in both native and partially denatured states could also be detected. XPS shows dear Au -S band formation, but this observation is not condusive for aqueous buffer conditions, as the protein is extensively unfolded under ultrahigh vacuum conditions needed for XPS. In situ STM disdoses de ar sub-monolayer coverage to molecular resolution. Imaging is robust in a 0.2 V electrochemical potential range negative ofthe equilibrium potential of YCC, where the protein is electrochemically functional. The MCS data show tensile differential stress signals when YCC is adsorbed on a gold-coate d MCS, with distinguishable adsorption phases in the time range from <102 s to several thousand seconds. Comprehensive approaches to the mapping of adsorbed functional redox metalloproteins toward the single-molecule level, such as in the present study, will be important in the construction of nanoscale devices for multifarious biological and environmental screening.
AB - We have studied the adsorption and electron-transfer dynamics of Saccharomyces cerevisiae (yeast) iso-l-cytochrome c adsorbed on Au(lll) electrodes in aqueous phosphate buffer media. This cytochrome possesses a thiol group dos e to the protein surface (Cysl02) suitable for linking the protein to gold without drastic protein unfolding. A comprehensive approach, based on linear sweep and differential pulse voltammetry, capacitance measurements, X-ray photoelectron spectroscopy (XPS) , in situscanning tunneling microscopy (STM), and microcantilever sensor (MCS) techniques has been used. The voltammetric data display a thiol reductive desorption signal corresponding to dase to monolayer coverage. Reductive desorption is also reflected in a capacitance peak. Voltammetric signals from the heme group in both native and partially denatured states could also be detected. XPS shows dear Au -S band formation, but this observation is not condusive for aqueous buffer conditions, as the protein is extensively unfolded under ultrahigh vacuum conditions needed for XPS. In situ STM disdoses de ar sub-monolayer coverage to molecular resolution. Imaging is robust in a 0.2 V electrochemical potential range negative ofthe equilibrium potential of YCC, where the protein is electrochemically functional. The MCS data show tensile differential stress signals when YCC is adsorbed on a gold-coate d MCS, with distinguishable adsorption phases in the time range from <102 s to several thousand seconds. Comprehensive approaches to the mapping of adsorbed functional redox metalloproteins toward the single-molecule level, such as in the present study, will be important in the construction of nanoscale devices for multifarious biological and environmental screening.
M3 - Journal article
SN - 0743-7463
VL - 19
SP - 3419
EP - 3427
JO - Langmuir
JF - Langmuir
IS - 8
ER -