A contribution in this issue, Greer et al. (2019), models carbon dioxide emissions from fuel combustion in global fisheries. This is done based on a method using data on fishing effort, presenting results for two sectors: small-scale and industrial fisheries. The selection of these sectors is not motivated in relation to studying fuel use, and it is well-documented that other factors more accurately predict fuel use of fisheries and would constitute a more useful basis for defining sub-sectors, when the goal of the study is to investigate fuel use. Weakly grounded assumptions made in the translation of fishing effort into carbon dioxide emissions (e.g. the engine run time per fishing day for each sector) systematically bias results towards overestimating fuel use of “industrial” vessels, underestimating that of “small-scale”. A sensitivity analysis should have been a minimum requirement for publication. To illustrate how the approach used by Greer et al. (2019) systematically misrepresents the fuel use and emissions of the two sectors, the model is applied to Australian and New Zealand rock lobster trap fisheries and compared to observed fuel use. It is demonstrated how the approach underestimates emissions of small-scale fisheries, while overestimating emissions of industrial fisheries. As global fisheries are dominated by industrial fisheries, the aggregate emission estimate is likely considerably overestimated. Effort-based approaches can be valuable to model fuel use of fisheries in data-poor situations, but should be seen as complementary to estimates based on direct data, which they can also help to validate. Whenever used, they should be based on transparent, science-based data and assumptions.

General information
Publication status: Published
Organisations: Section for Ecosystem based Marine Management, National Institute of Aquatic Resources, Research Institutes of Sweden, Dalhousie University, Asplan Viak AS, SINTEF
Corresponding author: Ziegler, F.
Contributors: Ziegler, F., Eigaard, O. R., Parker, R. W., Tyedmers, P. H., Hognes, E. S., Jafarzadeh, S.
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Marine Policy
Volume: 107
Article number: 103488
ISSN (Print): 0308-597X
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
Original language: English
Keywords: Carbon dioxide, Fisheries, Fuel efficiency, Fuel intensity, Fuel use, Greenhouse gas emissions
DOIs: 10.1016/j.marpol.2019.03.001
Source: FindIt
Source ID: 2452534514
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review