Adaptive Passivity Based Individual Pitch Control for Wind Turbines in the Full Load Region

Adaptive Passivity Based Individual Pitch Control for Wind Turbines in the Full Load Region
This paper tackles the problem of power regulation for wind turbines operating in the top region by an adaptive passivity based individual pitch control strategy. An adaptive nonlinear controller that ensures passivity of the mapping aerodynamic torque-regulation error is proposed, where the inclusion of gradient based adaptation laws allows for the on-line compensation of variations in the aerodynamic torque. The closed-loop equilibrium point of the regulation error dynamics is shown to be UGAS (uniformly globally asymptotically stable). Numerical simulations show that the proposed control strategy succeeds in regulating the power output of the wind turbine despite fluctuations of the wind field due to wake and turbulence, without overloading the pitch actuators.

General information
Publication status: Published
Organisations: Department of Electrical Engineering, Automation and Control, Department of Applied Mathematics and Computer Science, Dynamical Systems, Norwegian University of Science and Technology, Aalborg University
Contributors: Sørensen, K. L., Galeazzi, R., Odgaard, P. F., Niemann, H. H., Poulsen, N. K.
Pages: 554-559
Publication date: 2014

Host publication information
Title of host publication: Proceedings of the 2014 American Control Conference
Publisher: IEEE
ISBN (Print): 9781479932726
Electronic versions:
kls_rg_pfo_hhn_nkp_acc2014preprint.pdf
DOIs:
10.1109/ACC.2014.6858651
Source: PublicationPreSubmission
Source-ID: 92127894
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings – Annual report year: 2014 › Research › peer-review