Adaptive Observer for Nonlinearly Parameterised Hammerstein System with Sensor Delay – Applied to Ship Emissions Reduction

Taking offspring in a problem of ship emission reduction by exhaust gas recirculation control for large diesel engines, an underlying generic estimation challenge is formulated as a problem of joint state and parameter estimation for a class of multiple-input single-output Hammerstein systems with first order dynamics, sensor delay and a bounded time-varying parameter in the nonlinear part. The paper suggests a novel scheme for this estimation problem that guarantees exponential convergence to an interval that depends on the sensitivity of the system. The system is allowed to be nonlinear parameterized and time dependent, which are characteristics of the industrial problem we study. The approach requires the input nonlinearity to be a sector nonlinearity in the time-varying parameter. Salient features of the approach include simplicity of design and implementation. The efficacy of the adaptive observer is shown on simulated cases, on tests with a large diesel engine on test bed and on tests with a container vessel.

General information
Publication status: Published
Organisations: Department of Electrical Engineering, Automation and Control, MAN Diesel & Turbo, Linköping University
Contributors: Nielsen, K. V., Blanke, M., Eriksson, L.
Number of pages: 8
Pages: 1508-1515
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: IEEE Transactions on Control Systems Technology
Volume: 26
Issue number: 4
ISSN (Print): 1063-6536
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 6.67 SJR 1.811 SNIP 2.699
Web of Science (2018): Impact factor 5.371
Web of Science (2018): Indexed yes
Keywords: Nonlinear control systems, Joint state and parameter observer, Sensor delay

Electronic versions:
2016_OxygenObserver_kvn_mb_le.pdf
DOIs:
10.1109/TCST.2017.2715004

Bibliographical note
(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.