Adaptive modelling and forecasting of offshore wind power fluctuations with Markov-switching autoregressive models

    Research output: Contribution to journalJournal articleResearchpeer-review

    610 Downloads (Pure)

    Abstract

    Wind power production data at temporal resolutions of a few minutes exhibit successive periods with fluctuations of various dynamic nature and magnitude, which cannot be explained (so far) by the evolution of some explanatory variable. Our proposal is to capture this regime-switching behaviour with an approach relying on Markov-switching autoregressive (MSAR) models. An appropriate parameterization of the model coefficients is introduced, along with an adaptive estimation method allowing accommodation of long-term variations in the process characteristics. The objective criterion to be recursively optimized is based on penalized maximum likelihood, with exponential forgetting of past observations. MSAR models are then employed for one-step-ahead point forecasting of 10 min resolution time series of wind power at two large offshore wind farms. They are favourably compared against persistence and autoregressive models. It is finally shown that the main interest of MSAR models lies in their ability to generate interval/density forecasts of significantly higher skill.
    Original languageEnglish
    JournalJournal of Forecasting
    Volume31
    Issue number4
    Pages (from-to)281–313
    ISSN0277-6693
    DOIs
    Publication statusPublished - 2012

    Keywords

    • Wind power forecasting
    • Regime switching
    • Adaptive estimation
    • Point forecasting
    • Interval forecasting

    Fingerprint Dive into the research topics of 'Adaptive modelling and forecasting of offshore wind power fluctuations with Markov-switching autoregressive models'. Together they form a unique fingerprint.

    Cite this