Adaptive laboratory evolution resolves energy depletion to maintain high aromatic metabolite phenotypes in Escherichia coli strains lacking the Phosphotransferase System - DTU Orbit (07/08/2019)

Adaptive laboratory evolution resolves energy depletion to maintain high aromatic metabolite phenotypes in Escherichia coli strains lacking the Phosphotransferase System

Aromatic metabolites provide the backbone for numerous industrial and pharmaceutical compounds of high value. The Phosphotransferase System (PTS) is common to many bacteria, and is the primary mechanism for glucose uptake by Escherichia coli. The PTS was removed to conserve phosphoenolpyruvate (pep), which is a precursor for aromatic metabolites and consumed by the PTS, for aromatic metabolite production. Replicate adaptive laboratory evolution (ALE) of PTS and detailed omics data sets collected revealed that the PTS bridged the gap between respiration and fermentation, leading to distinct high fermentative and high respiratory rate phenotypes. It was also found that while all strains retained high levels of aromatic amino acid (AAA) biosynthetic precursors, only one replicate from the high glycolytic clade retained high levels of intracellular AAAs. The fast growth and high AAA precursor phenotypes could provide a starting host for cell factories targeting the overproduction aromatic metabolites.

General information
Publication status: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Network Reconstruction in Silico Biology, iLoop, ALE Technology & Software Development, Big Data 2 Knowledge, University of California at San Diego
Pages: 233-242
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Metabolic Engineering
Volume: 48
ISSN (Print): 1096-7176
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 8.78 SJR 3.165 SNIP 1.731
Web of Science (2018): Impact factor 7.808
Web of Science (2018): Indexed yes
Original language: English
Keywords: Adaptive laboratory evolution, Mutation analysis, Multi-omics analysis, Systems biology, E. coli, ptsH, ptsI, crr gene knockouts
Electronic versions:
SALIN_1_s2.0_S109671761830017X_main_postprint.pdf. Embargo ended: 05/07/2019
DOIs: 10.1016/j.meben.2018.06.005
Source: FindIt
Source-ID: 2435491963
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review