Adaptive control in an artificial pancreas for people with type 1 diabetes

Adaptive control in an artificial pancreas for people with type 1 diabetes

In this paper, we discuss overnight blood glucose stabilization in patients with type 1 diabetes using a Model Predictive Controller (MPC). We compute the model parameters in the MPC using a simple and systematic method based on a priori available patient information. We describe and compare 3 different model structures. The first model structure is an autoregressive integrated moving average with exogenous input (ARIMAX) structure. The second model structure is an autoregressive moving average with exogenous input (ARMAX) model, i.e. a model without an integrator. The third model structure is an adaptive ARMAX model in which we use a recursive extended least squares (RELS) method to estimate parameters of the stochastic part. In addition, we describe some safety layers in the control algorithm that improve the controller robustness and reduce the risk of hypoglycemia. We test and compare our control strategies using a virtual clinic of 100 randomly generated patients with a representative inter-subject variability. This virtual clinic is based on the Hovorka model. We consider the case where only half of the meal bolus is administered at mealtime, and the case where the insulin sensitivity increases during the night. The numerical results suggest that the use of an integrator leads to higher occurrence of hypoglycemia than for the controllers without the integrator. Compared to other control strategies, the adaptive MPC reduces both the time spent in hypoglycemia and the time spent in hyperglycemia.

General information
Publication status: Published
Organisations: Department of Applied Mathematics and Computer Science, Scientific Computing, Dynamical Systems, Copenhagen Center for Health Technology, Center for Energy Resources Engineering, Copenhagen University Hospital
Contributors: Boiroux, D., Duun-Henriksen, A. K., Schmidt, S., Nørgaard, K., Poulsen, N. K., Madsen, H., Jørgensen, J. B.
Number of pages: 11
Pages: 332–342
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Control Engineering Practice
Volume: 58
ISSN (Print): 0967-0661
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.42 SJR 1.069 SNIP 1.905
Web of Science (2017): Impact factor 2.616
Web of Science (2017): Indexed yes
Original language: English
Keywords: Model predictive control, Adaptive control, Artificial pancreas, Type 1 diabetes, Closed-loop glucose control
DOI:
10.1016/j.conengprac.2016.01.003
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review