Acute and subacute pulmonary toxicity and mortality in mice after intratracheal instillation of ZnO nanoparticles in three laboratories - DTU Orbit (23/10/2019)

Acute and subacute pulmonary toxicity and mortality in mice after intratracheal instillation of ZnO nanoparticles in three laboratories

Inhalation is the main pathway of ZnO exposure in the occupational environment but only few studies have addressed toxic effects after pulmonary exposure to ZnO nanoparticles (NP). Here we present results from three studies of pulmonary exposure and toxicity of ZnO NP in mice. The studies were prematurely terminated because interim results unexpectedly showed severe pulmonary toxicity. High bolus doses of ZnO NP (25 up to 100μg; ≥1.4mg/kg) were clearly associated with a dose dependent mortality in the mice. Lower doses (≥6μg; ≥0.3mg/kg) elicited acute toxicity in terms of reduced weight gain, desquamation of epithelial cells with concomitantly increased barrier permeability of the alveolar/blood as well as DNA damage. Oxidative stress was shown via a strong increase in lipid peroxidation and reduced glutathione in the pulmonary tissue. Two months post-exposure revealed no obvious toxicity for 12.5 and 25μg on a range of parameters. However, mice that survived a high dose (50μg; 2.7mg/kg) had an increased pulmonary collagen accumulation (fibrosis) at a similar level as a high bolus dose of crystalline silica. The recovery from these toxicological effects appeared dose-dependent. The results indicate that alveolar deposition of ZnO NP may cause significant adverse health effects.

General information
Publication status: Published
Organisations: National Food Institute, Division of Risk Assessment and Nutrition, National Research Centre for the Working Environment, Helmholtz Zentrum München - German Research Center for Environmental Health, University of Warmia and Mazury in Olsztyn, University of Copenhagen, Missouri University of Science and Technology, Université Catholique de Louvain
Pages: 84-95
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Food and Chemical Toxicology
Volume: 85
ISSN (Print): 0278-6915
Ratings:
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.44 SJR 1.202 SNIP 1.403
Web of Science (2015): Impact factor 3.584
Web of Science (2015): Indexed yes
Original language: English
Keywords: Food Science, Toxicology, Cytotoxicity, DNA damage, Fibrosis, Inflammation, Mortality, Oxidative stress
Electronic versions:
1_s2.0_S0278691515300302_main.pdf
DOIs:
10.1016/j.fct.2015.08.008
Source: FindIt
Source ID: 2280383709
Research output: Contribution to journal › Journal article – Annual report year: 2015 › Research › peer-review