Abstract
This work develops a methodology for the optimal design of actuators for the vibration control of flexible structures. The objective is the maximization of a measure of the controllability Gramian. The test case is the embedding of piezoelectric inserts in elastic structures for vibration control in modal space. A topology optimization was formulated to distribute two material phases in the domain: a passive linear elastic material and an active linear piezoelectric material, with a volume constraint in the latter. The objective function is the trace of the controllability Gramian of a LQR control system. Analytical sensitivities for the finite element model are derived for the objective function and constraints. Results are shown for two dimensional vibration control of a short beam with varying number of electrodes (control inputs) and vibration modes.
Original language | English |
---|---|
Journal | Structural and Multidisciplinary Optimization |
Volume | 51 |
Pages (from-to) | 145-157 |
ISSN | 1615-147X |
DOIs | |
Publication status | Published - 2015 |
Keywords
- Actuator placement
- Controllability Gramian
- Topology optimization
- Piezoelectric
- Vibration control