Activity and stability of feruloyl esterase A from Aspergillus niger in ionic liquid systems

Research output: Contribution to conferenceConference abstract for conferenceResearchpeer-review

180 Downloads (Pure)

Abstract

Feruloyl esterases (FAEs; EC 3.1.1.73) are accessory plant cell wall-degrading enzymes, which catalyse the hydrolysis of the ester bond between ferulic acid and the monosaccharide to which it is covalently linked. FAEs can however also be brought to catalyse the (trans)esterification reaction in solvents that favour synthesis over hydrolysis, i.e. systems with low water content such as organic solvents or ionic liquids (ILs). The esterification of sinapic acid with glycerol catalysed by FAE A from Aspergillus niger (AnFaeA) in a series of ILs containing 15% (v/v) buffer showed that AnFaeA stability – and hence activity – was highly dependent on the anion nature: AnFaeA was stable and active for more than 2 hours in [PF6]--based ILs, but rapidly lost activity in [BF4]--based systems. This effect can be explained in terms of hydrogen bonding capacity of the two anions: As predicted by the quantum chemistry-based COSMO-RS method, [BF4]- has a tendency to form hydrogen bonds and thus interfere with the secondary structure of the enzyme, while [PF6]-is unlikely to form hydrogen bonds and therefore does not cause denaturation of the enzyme. Similar results have been obtained for lipases [1], but this is the first report on FAE stability in ILs [2]. COSMO-RS, which is now widely used for solvent screening in the complex IL systems [3], may be a valuable tool for fast enzyme stability predictions and/or solvent screening in the future.
Original languageEnglish
Publication date2011
Publication statusPublished - 2011
Event6th Danish Conference on Biotechnology and Molecular Biology: Synthetic Biology and Cell Factories - Vejle, Denmark
Duration: 26 May 201127 May 2011
Conference number: 6

Conference

Conference6th Danish Conference on Biotechnology and Molecular Biology
Number6
Country/TerritoryDenmark
CityVejle
Period26/05/201127/05/2011

Fingerprint

Dive into the research topics of 'Activity and stability of feruloyl esterase A from Aspergillus niger in ionic liquid systems'. Together they form a unique fingerprint.

Cite this