Virtual reality is a technology that has seen increasing usage in architecture and building design in recent years. It can add value to the design process by, for example, making it easier to communicate design considerations with relevant stakeholders, such as clients, developers, engineers and architects. It also helps the designers themselves by providing a more immersive and realistic view of the modelled building and a better sense of scale. VR is also used in several other fields, such as entertainment (video games in particular), training, education and healthcare. Incorporating sound and acoustics into the virtual reality sphere adds another dimension to the experience. It both makes the immersion more believable, and in the context of building design, makes it easy and intuitive to try out different acoustic designs and soundscapes. In traditional auralization, although a very powerful tool in itself, the receiver location is usually fixed. In VR, the receiver can move around in the modeled space and switch between different designs with a click of a button, and this way get a better feeling for the acoustics of the space. In this paper, a brief overview of some of the current technologies used in acoustic virtual reality will be outlined, where the pros and cons of different approaches will be discussed. Furthermore, some examples of how the technology has been used at Henning Larsen on chosen projects will be given.