Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane

Rune Barnkob, Per Augustsson, Thomas Laurell, Henrik Bruus

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

We present microparticle image velocimetry measurements of suspended microparticles of diameters from 0.6 to 10μm undergoing acoustophoresis in an ultrasound symmetry plane in a microchannel. The motion of the smallest particles is dominated by the Stokes drag from the induced acoustic streaming flow, while the motion of the largest particles is dominated by the acoustic radiation force. For all particle sizes we predict theoretically how much of the particle velocity is due to radiation and streaming, respectively. These predictions include corrections for particle-wall interactions and ultrasonic thermoviscous effects and match our measurements within the experimental uncertainty. Finally, we predict theoretically and confirm experimentally that the ratio between the acoustic radiation- and streaming-induced particle velocities is proportional to the actuation frequency, the acoustic contrast factor, and the square of the particle size, while it is inversely proportional to the kinematic viscosity.
Original languageEnglish
Article number056307
JournalPhysical Review E
Volume86
Issue number5
Number of pages11
ISSN2470-0045
DOIs
Publication statusPublished - 2012

Fingerprint

Dive into the research topics of 'Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane'. Together they form a unique fingerprint.

Cite this