Abstract
Plants produce a vast diversity of valuable compounds with medical properties, but these are often difficult to purify from the natural source or produce by organic synthesis. An alternative is to transfer the biosynthetic pathways to an efficient production host like the bacterium Escherichia coli. Cloning and heterologous gene expression are major bottlenecks in the metabolic engineering field. We are working on standardizing DNA vector design processes to promote automation and collaborations in early phase metabolic engineering projects. Here, we focus on optimizing the already established uracil-excision-based cloning and combining it with a genome-engineering approach to allow direct integration of whole metabolic pathways into the genome of E. coli, to facilitate the advanced engineering of cell factories.
Original language | English |
---|---|
Title of host publication | The Danish Microbiological Society Annual Congress 2015 : Programme & Abstracts |
Place of Publication | Copenhagen |
Publication date | 2015 |
Pages | 77-77 |
Publication status | Published - 2015 |
Event | The Danish Microbiological Society Annual Congress 2015 - Eigtved's Pakhus, Copenhagen, Denmark Duration: 9 Nov 2015 → 9 Nov 2015 |
Conference
Conference | The Danish Microbiological Society Annual Congress 2015 |
---|---|
Location | Eigtved's Pakhus |
Country/Territory | Denmark |
City | Copenhagen |
Period | 09/11/2015 → 09/11/2015 |