Accounting for the uncertainty related to building occupants with regards to visual comfort: A literature survey on drivers and models

The interactions between building occupants and control systems have a high influence on energy consumption and on indoor environmental quality. In the perspective of a future of "nearly-zero" energy buildings, it is crucial to analyse the energy-related interactions deeply to predict realistic energy use during the design stage. Since the reaction to thermal, acoustic, or visual stimuli is not the same for every human being, monitoring the behaviour inside buildings is an essential step to assert differences in energy consumption related to different interactions. Reliable information concerning occupants’ behaviours in a building could contribute to a better evaluation of building energy performances and design robustness, as well as supporting the development of occupants' education to energy awareness. The present literature survey enlarges our understanding of which environmental conditions influence occupants' manual controlling of the system in offices and by consequence the energy consumption. The purpose of this study was to investigate the possible drivers for light-switching to model occupant behaviour in office buildings. The probability of switching lighting systems on or off was related to the occupancy and differentiated for arrival, intermediate, and departure periods. The switching probability has been reported to be higher during the entering or the leaving time in relation to contextual variables. In the analysis of switch-on actions, users were often clustered between those who take daylight level into account and switch on lights only if necessary and people who totally disregard the natural lighting. This underlines the importance of how individuality is at the base of the definition of the different types of users.

General information
Publication status: Published
Organisations: Department of Civil Engineering, Section for Indoor Climate and Building Physics, Polytechnic University of Turin
Contributors: Fabi, V., Andersen, R. K., Corgnati, S.
Number of pages: 17
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Buildings
Volume: 6
Issue number: 1
ISSN (Print): 2075-5309
Ratings:
Scopus rating (2016): CiteScore 0.74 SJR 0.304 SNIP 0.616
Original language: English
Keywords: Occupant behaviour, Window opening, Statistical modeling, Behavioural verification, Light switching

Bibliographical note
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Source: FindIt
Source ID: 2291906780
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review