Acceleration of electrons in the plasma wakefield of a proton bunch

E. Adli, A. Ahuja, O. Apsimon, R. Apsimon, A. -M. Bachmann, D. Barrientos, F. Batsch, J. Bauche, V. K. Berglyd Olsen, M. Bernardini, T. Bohl, C. Bracco, F. Braunmueller, G. Burt, B. Buttenschoen, A. Caldwell, M. Cascella, J. Chappell, E. Chevallay, M. Chung & 73 others David Cooke, H. Damerau, L. Deacon, L. H. Deubner, A. Dexter, S. Doebert, J. Farmer, V. N. Fedosseev, R. Fiorito, R. A. Fonseca, F. Friebel, L. Garolfi, S. Gessner, I. Gorgisyan, A. A. Gorn, E. Granados, O. Grulke, E. Gschwendtner, J. Hansen, A. Helm, J. R. Henderson, M. Huether, M. Ibison, L. Jensen, S. Jolly, F. Keeble, S. -Y. Kim, F. Kraus, Y. Li, S. Liu, N. Lopes, K. V. Lotov, L. Maricalva Brun, M. Martyanov, S. Mazzoni, D. Medina Godoy, V. A. Minakov, J. Mitchell, J. C. Molendijk, J. T. Moody, M. Moreira, P. Muggli, E. Oez, C. Pasquino, A. Pardons, F. Pena Asmus, K. Pepitone, A. Perera, A. Petrenko, S. Pitman, A. Pukhov, S. Rey, K. Rieger, H. Ruhl, J. S. Schmidt, I. A. Shalimova, P. Sherwood, L. O. Silva, L. Soby, A. P. Sosedkin, R. Speroni, R. I. Spitsyn, P. V. Tuev, M. Turner, F. Velotti, L. Verra, V. A. Verzilov, J. Vieira, C. P. Welsch, B. Williamson, M. Wing*, B. Woolley, G. Xia

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

47 Downloads (Pure)

Abstract

High-energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. To increase the energy of the particles or to reduce the size of the accelerator, new acceleration schemes need to be developed. Plasma wakefield acceleration(1-5), in which the electrons in a plasma are excited, leading to strong electric fields (so called 'wakefields'), is one such promising acceleration technique. Experiments have shown that an intense laser pulse(6-9) or electron bunch(10,11) traversing a plasma can drive electric fields of tens of gigavolts per metre and above-well beyond those achieved in conventional radio-frequency accelerators (about 0.1 gigavolt per metre). However, the low stored energy of laser pulses and electron bunches means that multiple acceleration stages are needed to reach very high particle energies(5,12). The use of proton bunches is compelling because they have the potential to drive wakefields and to accelerate electrons to high energy in a single acceleration stage(13). Long, thin proton bunches can be used because they undergo a process called self-modulation(14-16), a particle-plasma interaction that splits the bunch longitudinally into a series of high-density microbunches, which then act resonantly to create large wakefields. The Advanced Wakefield (AWAKE) experiment at CERN17-19 uses high-intensity proton bunches-in which each proton has an energy of 400 gigaelectronvolts, resulting in a total bunch energy of 19 kilojoules-to drive a wakefield in a ten-metrelong plasma. Electron bunches are then injected into this wakefield. Here we present measurements of electrons accelerated up to two gigaelectronvolts at the AWAKE experiment, in a demonstration of proton-driven plasma wakefield acceleration. Measurements were conducted under various plasma conditions and the acceleration was found to be consistent and reliable. The potential for this scheme to produce very high-energy electron bunches in a single accelerating stage(20) means that our results are an important step towards the development of future high-energy particle accelerators(21-22).
Original languageEnglish
JournalNature
Volume561
Issue number7723
Pages (from-to)363-367
Number of pages5
ISSN0028-0836
DOIs
Publication statusPublished - 2018

Cite this

Adli, E., Ahuja, A., Apsimon, O., Apsimon, R., Bachmann, A. -M., Barrientos, D., ... Xia, G. (2018). Acceleration of electrons in the plasma wakefield of a proton bunch. Nature, 561(7723), 363-367. https://doi.org/10.1038/s41586-018-0485-4
Adli, E. ; Ahuja, A. ; Apsimon, O. ; Apsimon, R. ; Bachmann, A. -M. ; Barrientos, D. ; Batsch, F. ; Bauche, J. ; Olsen, V. K. Berglyd ; Bernardini, M. ; Bohl, T. ; Bracco, C. ; Braunmueller, F. ; Burt, G. ; Buttenschoen, B. ; Caldwell, A. ; Cascella, M. ; Chappell, J. ; Chevallay, E. ; Chung, M. ; Cooke, David ; Damerau, H. ; Deacon, L. ; Deubner, L. H. ; Dexter, A. ; Doebert, S. ; Farmer, J. ; Fedosseev, V. N. ; Fiorito, R. ; Fonseca, R. A. ; Friebel, F. ; Garolfi, L. ; Gessner, S. ; Gorgisyan, I. ; Gorn, A. A. ; Granados, E. ; Grulke, O. ; Gschwendtner, E. ; Hansen, J. ; Helm, A. ; Henderson, J. R. ; Huether, M. ; Ibison, M. ; Jensen, L. ; Jolly, S. ; Keeble, F. ; Kim, S. -Y. ; Kraus, F. ; Li, Y. ; Liu, S. ; Lopes, N. ; Lotov, K. V. ; Brun, L. Maricalva ; Martyanov, M. ; Mazzoni, S. ; Godoy, D. Medina ; Minakov, V. A. ; Mitchell, J. ; Molendijk, J. C. ; Moody, J. T. ; Moreira, M. ; Muggli, P. ; Oez, E. ; Pasquino, C. ; Pardons, A. ; Asmus, F. Pena ; Pepitone, K. ; Perera, A. ; Petrenko, A. ; Pitman, S. ; Pukhov, A. ; Rey, S. ; Rieger, K. ; Ruhl, H. ; Schmidt, J. S. ; Shalimova, I. A. ; Sherwood, P. ; Silva, L. O. ; Soby, L. ; Sosedkin, A. P. ; Speroni, R. ; Spitsyn, R. I. ; Tuev, P. V. ; Turner, M. ; Velotti, F. ; Verra, L. ; Verzilov, V. A. ; Vieira, J. ; Welsch, C. P. ; Williamson, B. ; Wing, M. ; Woolley, B. ; Xia, G. / Acceleration of electrons in the plasma wakefield of a proton bunch. In: Nature. 2018 ; Vol. 561, No. 7723. pp. 363-367.
@article{9a3131fda11c42c89c90bf64ff8aeb8c,
title = "Acceleration of electrons in the plasma wakefield of a proton bunch",
abstract = "High-energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. To increase the energy of the particles or to reduce the size of the accelerator, new acceleration schemes need to be developed. Plasma wakefield acceleration(1-5), in which the electrons in a plasma are excited, leading to strong electric fields (so called 'wakefields'), is one such promising acceleration technique. Experiments have shown that an intense laser pulse(6-9) or electron bunch(10,11) traversing a plasma can drive electric fields of tens of gigavolts per metre and above-well beyond those achieved in conventional radio-frequency accelerators (about 0.1 gigavolt per metre). However, the low stored energy of laser pulses and electron bunches means that multiple acceleration stages are needed to reach very high particle energies(5,12). The use of proton bunches is compelling because they have the potential to drive wakefields and to accelerate electrons to high energy in a single acceleration stage(13). Long, thin proton bunches can be used because they undergo a process called self-modulation(14-16), a particle-plasma interaction that splits the bunch longitudinally into a series of high-density microbunches, which then act resonantly to create large wakefields. The Advanced Wakefield (AWAKE) experiment at CERN17-19 uses high-intensity proton bunches-in which each proton has an energy of 400 gigaelectronvolts, resulting in a total bunch energy of 19 kilojoules-to drive a wakefield in a ten-metrelong plasma. Electron bunches are then injected into this wakefield. Here we present measurements of electrons accelerated up to two gigaelectronvolts at the AWAKE experiment, in a demonstration of proton-driven plasma wakefield acceleration. Measurements were conducted under various plasma conditions and the acceleration was found to be consistent and reliable. The potential for this scheme to produce very high-energy electron bunches in a single accelerating stage(20) means that our results are an important step towards the development of future high-energy particle accelerators(21-22).",
author = "E. Adli and A. Ahuja and O. Apsimon and R. Apsimon and Bachmann, {A. -M.} and D. Barrientos and F. Batsch and J. Bauche and Olsen, {V. K. Berglyd} and M. Bernardini and T. Bohl and C. Bracco and F. Braunmueller and G. Burt and B. Buttenschoen and A. Caldwell and M. Cascella and J. Chappell and E. Chevallay and M. Chung and David Cooke and H. Damerau and L. Deacon and Deubner, {L. H.} and A. Dexter and S. Doebert and J. Farmer and Fedosseev, {V. N.} and R. Fiorito and Fonseca, {R. A.} and F. Friebel and L. Garolfi and S. Gessner and I. Gorgisyan and Gorn, {A. A.} and E. Granados and O. Grulke and E. Gschwendtner and J. Hansen and A. Helm and Henderson, {J. R.} and M. Huether and M. Ibison and L. Jensen and S. Jolly and F. Keeble and Kim, {S. -Y.} and F. Kraus and Y. Li and S. Liu and N. Lopes and Lotov, {K. V.} and Brun, {L. Maricalva} and M. Martyanov and S. Mazzoni and Godoy, {D. Medina} and Minakov, {V. A.} and J. Mitchell and Molendijk, {J. C.} and Moody, {J. T.} and M. Moreira and P. Muggli and E. Oez and C. Pasquino and A. Pardons and Asmus, {F. Pena} and K. Pepitone and A. Perera and A. Petrenko and S. Pitman and A. Pukhov and S. Rey and K. Rieger and H. Ruhl and Schmidt, {J. S.} and Shalimova, {I. A.} and P. Sherwood and Silva, {L. O.} and L. Soby and Sosedkin, {A. P.} and R. Speroni and Spitsyn, {R. I.} and Tuev, {P. V.} and M. Turner and F. Velotti and L. Verra and Verzilov, {V. A.} and J. Vieira and Welsch, {C. P.} and B. Williamson and M. Wing and B. Woolley and G. Xia",
year = "2018",
doi = "10.1038/s41586-018-0485-4",
language = "English",
volume = "561",
pages = "363--367",
journal = "Nature",
issn = "0028-0836",
publisher = "Nature Publishing Group",
number = "7723",

}

Adli, E, Ahuja, A, Apsimon, O, Apsimon, R, Bachmann, A-M, Barrientos, D, Batsch, F, Bauche, J, Olsen, VKB, Bernardini, M, Bohl, T, Bracco, C, Braunmueller, F, Burt, G, Buttenschoen, B, Caldwell, A, Cascella, M, Chappell, J, Chevallay, E, Chung, M, Cooke, D, Damerau, H, Deacon, L, Deubner, LH, Dexter, A, Doebert, S, Farmer, J, Fedosseev, VN, Fiorito, R, Fonseca, RA, Friebel, F, Garolfi, L, Gessner, S, Gorgisyan, I, Gorn, AA, Granados, E, Grulke, O, Gschwendtner, E, Hansen, J, Helm, A, Henderson, JR, Huether, M, Ibison, M, Jensen, L, Jolly, S, Keeble, F, Kim, S-Y, Kraus, F, Li, Y, Liu, S, Lopes, N, Lotov, KV, Brun, LM, Martyanov, M, Mazzoni, S, Godoy, DM, Minakov, VA, Mitchell, J, Molendijk, JC, Moody, JT, Moreira, M, Muggli, P, Oez, E, Pasquino, C, Pardons, A, Asmus, FP, Pepitone, K, Perera, A, Petrenko, A, Pitman, S, Pukhov, A, Rey, S, Rieger, K, Ruhl, H, Schmidt, JS, Shalimova, IA, Sherwood, P, Silva, LO, Soby, L, Sosedkin, AP, Speroni, R, Spitsyn, RI, Tuev, PV, Turner, M, Velotti, F, Verra, L, Verzilov, VA, Vieira, J, Welsch, CP, Williamson, B, Wing, M, Woolley, B & Xia, G 2018, 'Acceleration of electrons in the plasma wakefield of a proton bunch', Nature, vol. 561, no. 7723, pp. 363-367. https://doi.org/10.1038/s41586-018-0485-4

Acceleration of electrons in the plasma wakefield of a proton bunch. / Adli, E.; Ahuja, A.; Apsimon, O.; Apsimon, R.; Bachmann, A. -M.; Barrientos, D.; Batsch, F.; Bauche, J.; Olsen, V. K. Berglyd; Bernardini, M.; Bohl, T.; Bracco, C.; Braunmueller, F.; Burt, G.; Buttenschoen, B.; Caldwell, A.; Cascella, M.; Chappell, J.; Chevallay, E.; Chung, M.; Cooke, David; Damerau, H.; Deacon, L.; Deubner, L. H.; Dexter, A.; Doebert, S.; Farmer, J.; Fedosseev, V. N.; Fiorito, R.; Fonseca, R. A.; Friebel, F.; Garolfi, L.; Gessner, S.; Gorgisyan, I.; Gorn, A. A.; Granados, E.; Grulke, O.; Gschwendtner, E.; Hansen, J.; Helm, A.; Henderson, J. R.; Huether, M.; Ibison, M.; Jensen, L.; Jolly, S.; Keeble, F.; Kim, S. -Y.; Kraus, F.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K. V.; Brun, L. Maricalva; Martyanov, M.; Mazzoni, S.; Godoy, D. Medina; Minakov, V. A.; Mitchell, J.; Molendijk, J. C.; Moody, J. T.; Moreira, M.; Muggli, P.; Oez, E.; Pasquino, C.; Pardons, A.; Asmus, F. Pena; Pepitone, K.; Perera, A.; Petrenko, A.; Pitman, S.; Pukhov, A.; Rey, S.; Rieger, K.; Ruhl, H.; Schmidt, J. S.; Shalimova, I. A.; Sherwood, P.; Silva, L. O.; Soby, L.; Sosedkin, A. P.; Speroni, R.; Spitsyn, R. I.; Tuev, P. V.; Turner, M.; Velotti, F.; Verra, L.; Verzilov, V. A.; Vieira, J.; Welsch, C. P.; Williamson, B.; Wing, M.; Woolley, B.; Xia, G.

In: Nature, Vol. 561, No. 7723, 2018, p. 363-367.

Research output: Contribution to journalJournal articleResearchpeer-review

TY - JOUR

T1 - Acceleration of electrons in the plasma wakefield of a proton bunch

AU - Adli, E.

AU - Ahuja, A.

AU - Apsimon, O.

AU - Apsimon, R.

AU - Bachmann, A. -M.

AU - Barrientos, D.

AU - Batsch, F.

AU - Bauche, J.

AU - Olsen, V. K. Berglyd

AU - Bernardini, M.

AU - Bohl, T.

AU - Bracco, C.

AU - Braunmueller, F.

AU - Burt, G.

AU - Buttenschoen, B.

AU - Caldwell, A.

AU - Cascella, M.

AU - Chappell, J.

AU - Chevallay, E.

AU - Chung, M.

AU - Cooke, David

AU - Damerau, H.

AU - Deacon, L.

AU - Deubner, L. H.

AU - Dexter, A.

AU - Doebert, S.

AU - Farmer, J.

AU - Fedosseev, V. N.

AU - Fiorito, R.

AU - Fonseca, R. A.

AU - Friebel, F.

AU - Garolfi, L.

AU - Gessner, S.

AU - Gorgisyan, I.

AU - Gorn, A. A.

AU - Granados, E.

AU - Grulke, O.

AU - Gschwendtner, E.

AU - Hansen, J.

AU - Helm, A.

AU - Henderson, J. R.

AU - Huether, M.

AU - Ibison, M.

AU - Jensen, L.

AU - Jolly, S.

AU - Keeble, F.

AU - Kim, S. -Y.

AU - Kraus, F.

AU - Li, Y.

AU - Liu, S.

AU - Lopes, N.

AU - Lotov, K. V.

AU - Brun, L. Maricalva

AU - Martyanov, M.

AU - Mazzoni, S.

AU - Godoy, D. Medina

AU - Minakov, V. A.

AU - Mitchell, J.

AU - Molendijk, J. C.

AU - Moody, J. T.

AU - Moreira, M.

AU - Muggli, P.

AU - Oez, E.

AU - Pasquino, C.

AU - Pardons, A.

AU - Asmus, F. Pena

AU - Pepitone, K.

AU - Perera, A.

AU - Petrenko, A.

AU - Pitman, S.

AU - Pukhov, A.

AU - Rey, S.

AU - Rieger, K.

AU - Ruhl, H.

AU - Schmidt, J. S.

AU - Shalimova, I. A.

AU - Sherwood, P.

AU - Silva, L. O.

AU - Soby, L.

AU - Sosedkin, A. P.

AU - Speroni, R.

AU - Spitsyn, R. I.

AU - Tuev, P. V.

AU - Turner, M.

AU - Velotti, F.

AU - Verra, L.

AU - Verzilov, V. A.

AU - Vieira, J.

AU - Welsch, C. P.

AU - Williamson, B.

AU - Wing, M.

AU - Woolley, B.

AU - Xia, G.

PY - 2018

Y1 - 2018

N2 - High-energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. To increase the energy of the particles or to reduce the size of the accelerator, new acceleration schemes need to be developed. Plasma wakefield acceleration(1-5), in which the electrons in a plasma are excited, leading to strong electric fields (so called 'wakefields'), is one such promising acceleration technique. Experiments have shown that an intense laser pulse(6-9) or electron bunch(10,11) traversing a plasma can drive electric fields of tens of gigavolts per metre and above-well beyond those achieved in conventional radio-frequency accelerators (about 0.1 gigavolt per metre). However, the low stored energy of laser pulses and electron bunches means that multiple acceleration stages are needed to reach very high particle energies(5,12). The use of proton bunches is compelling because they have the potential to drive wakefields and to accelerate electrons to high energy in a single acceleration stage(13). Long, thin proton bunches can be used because they undergo a process called self-modulation(14-16), a particle-plasma interaction that splits the bunch longitudinally into a series of high-density microbunches, which then act resonantly to create large wakefields. The Advanced Wakefield (AWAKE) experiment at CERN17-19 uses high-intensity proton bunches-in which each proton has an energy of 400 gigaelectronvolts, resulting in a total bunch energy of 19 kilojoules-to drive a wakefield in a ten-metrelong plasma. Electron bunches are then injected into this wakefield. Here we present measurements of electrons accelerated up to two gigaelectronvolts at the AWAKE experiment, in a demonstration of proton-driven plasma wakefield acceleration. Measurements were conducted under various plasma conditions and the acceleration was found to be consistent and reliable. The potential for this scheme to produce very high-energy electron bunches in a single accelerating stage(20) means that our results are an important step towards the development of future high-energy particle accelerators(21-22).

AB - High-energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. To increase the energy of the particles or to reduce the size of the accelerator, new acceleration schemes need to be developed. Plasma wakefield acceleration(1-5), in which the electrons in a plasma are excited, leading to strong electric fields (so called 'wakefields'), is one such promising acceleration technique. Experiments have shown that an intense laser pulse(6-9) or electron bunch(10,11) traversing a plasma can drive electric fields of tens of gigavolts per metre and above-well beyond those achieved in conventional radio-frequency accelerators (about 0.1 gigavolt per metre). However, the low stored energy of laser pulses and electron bunches means that multiple acceleration stages are needed to reach very high particle energies(5,12). The use of proton bunches is compelling because they have the potential to drive wakefields and to accelerate electrons to high energy in a single acceleration stage(13). Long, thin proton bunches can be used because they undergo a process called self-modulation(14-16), a particle-plasma interaction that splits the bunch longitudinally into a series of high-density microbunches, which then act resonantly to create large wakefields. The Advanced Wakefield (AWAKE) experiment at CERN17-19 uses high-intensity proton bunches-in which each proton has an energy of 400 gigaelectronvolts, resulting in a total bunch energy of 19 kilojoules-to drive a wakefield in a ten-metrelong plasma. Electron bunches are then injected into this wakefield. Here we present measurements of electrons accelerated up to two gigaelectronvolts at the AWAKE experiment, in a demonstration of proton-driven plasma wakefield acceleration. Measurements were conducted under various plasma conditions and the acceleration was found to be consistent and reliable. The potential for this scheme to produce very high-energy electron bunches in a single accelerating stage(20) means that our results are an important step towards the development of future high-energy particle accelerators(21-22).

U2 - 10.1038/s41586-018-0485-4

DO - 10.1038/s41586-018-0485-4

M3 - Journal article

VL - 561

SP - 363

EP - 367

JO - Nature

JF - Nature

SN - 0028-0836

IS - 7723

ER -

Adli E, Ahuja A, Apsimon O, Apsimon R, Bachmann A-M, Barrientos D et al. Acceleration of electrons in the plasma wakefield of a proton bunch. Nature. 2018;561(7723):363-367. https://doi.org/10.1038/s41586-018-0485-4