Absolute environmental sustainability assessment of renewable dimethyl ether fuelled heavy-duty trucks

Margarita A. Charalambous, Victor Tulus, Morten W. Ryberg, Javier Pérez-Ramírez, Gonzalo Guillén-Gosálbez*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

38 Downloads (Pure)

Abstract

In recent years, liquid fuels from renewable carbon that can replace fossil ones with minimal infrastructure changes have attracted increasing interest in decarbonising the heavy-duty long-haul sector. Here we focus on dimethyl ether (DME), a promising alternative to diesel due to its high cetane number, oxygen content, and more efficient and cleaner propulsion that results in low particulate matter and sulphur oxide emissions. Going well beyond previous studies that quantified the environmental impact of DME, often in terms of global warming, here we evaluate DME use in heavy-duty trucks in the context of seven planetary boundaries, all essential for maintaining the Earth's stability. Focusing on several scenarios differing in the feedstock origin, we find that routes based on fossil carbon, either in the form of coal, natural gas, or captured CO2 from fossil plants, would increase the greenhouse gas emissions relative to the business-as-usual. Only scenarios based on renewable carbon could reduce the impacts on climate change, while hydrogen from biomass gasification coupled with carbon capture and storage (CCS) and DME from biomass gasification with CCS could enable an environmentally sustainable operation within all the planetary boundaries. Overall, our work opens up new avenues for the environmental assessment of fuels considering the finite capacity of the Earth system to guide research and policy-making more sensibly.

Original languageEnglish
JournalSustainable Energy and Fuels
Volume7
Issue number8
Pages (from-to)1930-1941
Number of pages12
ISSN2398-4902
DOIs
Publication statusPublished - 2023

Fingerprint

Dive into the research topics of 'Absolute environmental sustainability assessment of renewable dimethyl ether fuelled heavy-duty trucks'. Together they form a unique fingerprint.

Cite this