Ablative fractional CO2 laser treatment promotes wound healing phenotype in skin macrophages

Martin Wiinberg*, Thomas L. Andresen, Merete Haedersdal, Uffe H. Olesen

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

9 Downloads (Pure)


Objectives: Ablative fractional laser (AFL) treatment is a well-established method for reducing signs of skin photoaging. However, the biological mechanisms underlying AFL-induced healing responses and skin rejuvenation remain largely unknown. It is known that macrophages play an important role in orchestrating healing, normalization, and remodeling processes in skin. Macrophage phenotypes are characterized by inflammatory markers, including arginase-1 (Arg1), major histocompatibility class II molecules (MHC II), and CD206. This study aims to explore AFL's effect on macrophage phenotype by evaluating changes in inflammatory markers and the potential concurrent accumulation of Arg1 in the skin.

Methods: Mice (n = 9) received a single AFL treatment on the left side of the back skin (100 mJ/microbeam, 5% density) while the right side of the back remained untreated as control. Treated and untreated skin from each mouse were collected Day 5 posttreatment for flow cytometry and histology analysis. Flow cytometry evaluated the immune infiltration of macrophages and the expression of macrophage inflammatory markers (Arg1, MHC II, and CD206). In addition, Arg1 presence in the skin was evaluated through antibody staining of histology samples and quantification was performed using QuPath image analysis software. 

Results: Following AFL, the number of macrophages increased 11-fold (p = 0.0053). Phenotype analysis of AFL-treated skin revealed an increase in the percentage of macrophages positive for Arg1 (p < 0.0001) and a decrease in the percentage of macrophages positive for MHC II (p < 0.0001) compared to untreated skin. No significant differences were observed in percentage of CD206-positive macrophages (p = 0.8952). Visualization of AFL-treated skin demonstrated a distinct pattern of Arg1 accumulation that correlated with the microscopic treatment zones (MTZ). Quantification of the percentage of Arg1-positive area in epidermis and dermis showed a significant increase from 3.5% ± 1.2% to 5.2% ± 1.7 (p = 0.0232) and an increase from 2.2% ± 1.2% to 9.6% ± 3.3 (p < 0.0001) in whole skin samples. 

Conclusion: AFL treatment polarizes macrophages toward a wound healing phenotype and induces Arg1 accumulation in the MTZ. We propose that the polarized wound healing macrophages are a major source for the increased Arg1 levels observed in the skin following treatment.

Original languageEnglish
JournalLasers in Surgery and Medicine
Issue number3
Pages (from-to)270-278
Publication statusPublished - 2024


  • Ablative fractional laser
  • Arginase-1
  • Inflammation
  • Macrophages
  • Wound healing


Dive into the research topics of 'Ablative fractional CO2 laser treatment promotes wound healing phenotype in skin macrophages'. Together they form a unique fingerprint.

Cite this