A wettability indicator parameter based on the thermodynamic modelling of chalk-oil-brine systems

Maria Bonto*, Ali Akbar Eftekhari, Hamidreza M. Nick

*Corresponding author for this work

    Research output: Contribution to journalJournal articleResearchpeer-review

    Abstract

    The complex physicochemical interactions in the calcite-brine-crude oil system, triggered by the injection modified salinity water (MSW) into the reservoir, are modelled by several researchers. However, the proposed models are either not consistent with a wettability alteration mechanism or cannot explain the observed improved oil recovery in chalk. We propose a new methodology denominated “Available Adsorption Sites” (AAS) that assesses the wettability alteration as a combined effect of a chemical and electrostatic contribution. Thus, we describe mathematically the interactions between the polar groups in the oil phase and the chalk by considering analogy with the thermodynamics of adsorption of an ion on a charged surface. The chalk wetting properties depend on the number of sites available for the adsorption of oleic polar groups at the mineral surface and the electrical potential at the rock-brine and brine-oil interfaces. We evaluate how the AAS parameter correlates with the remaining oil saturation from spontaneous imbibition tests on chalk samples. This approach is not only useful for the predictive evaluation of the outcome of MSW in chalk reservoirs but can also be integrated in reactive transport models and assess the flow of organic contaminants (e.g., naphtenic acids) in chalk aquifers. The model can potentially be applied to other carbonates.
    Original languageEnglish
    JournalEnergy and Fuels
    Volume34
    Pages (from-to)8018−8036
    ISSN0887-0624
    DOIs
    Publication statusPublished - 2020

    Fingerprint

    Dive into the research topics of 'A wettability indicator parameter based on the thermodynamic modelling of chalk-oil-brine systems'. Together they form a unique fingerprint.

    Cite this