A very luminous jet from the disruption of a star by a massive black hole

Igor Andreoni*, Michael W. Coughlin*, Daniel A. Perley, Yuhan Yao, Wenbin Lu, S. Bradley Cenko, Harsh Kumar, Shreya Anand, Anna Y. Q. Ho, Mansi M. Kasliwal, Antonio de Ugarte Postigo, Ana Sagués-Carracedo, Steve Schulze, D. Alexander Kann, S. R. Kulkarni, Jesper Sollerman, Nial Tanvir, Armin Rest, Luca Izzo, Jean J. SomalwarDavid L. Kaplan, Tomás Ahumada, G. C. Anupama, Katie Auchettl, Sudhanshu Barway, Eric C. Bellm, Varun Bhalerao, Joshua S. Bloom, Michael Bremer, Mattia Bulla, Eric Burns, Sergio Campana, Poonam Chandra, Panos Charalampopoulos, Jeff Cooke, Valerio D’Elia, Kaustav Kashyap Das, Dougal Dobie, José Feliciano Agüí Fernández, James Freeburn, Cristoffer Fremling, Suvi Gezari, Simon Goode, Matthew J. Graham, Erica Hammerstein, Viraj R. Karambelkar, Charles D. Kilpatrick, Erik C. Kool, Melanie Krips, Russ R. Laher, Giorgos Leloudas, Andrew Levan, Michael J. Lundquist, Ashish A. Mahabal, Michael S. Medford, M. Coleman Miller, Anais Möller, Kunal P. Mooley, A. J. Nayana, Guy Nir, Peter T. H. Pang, Emmy Paraskeva, Richard A. Perley, Glen Petitpas, Miika Pursiainen, Vikram Ravi, Ryan Ridden-Harper, Reed Riddle, Mickael Rigault, Antonio C. Rodriguez, Ben Rusholme, Yashvi Sharma, I. A. Smith, Robert D. Stein, Christina Thöne, Aaron Tohuvavohu, Frank Valdes, Jan van Roestel, Susanna D. Vergani, Qinan Wang, Jielai Zhang

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

78 Downloads (Pure)

Abstract

Updated abstract:
Tidal disruption events (TDEs) are bursts of electromagnetic energy that are released when supermassive black holes at the centres of galaxies violently disrupt a star that passes too close1. TDEs provide a window through which to study accretion onto supermassive black holes; in some rare cases, this accretion leads to launching of a relativistic jet2,3,4,5,6,7,8,9, but the necessary conditions are not fully understood. The best-studied jetted TDE so far is Swift J1644+57, which was discovered in γ-rays, but was too obscured by dust to be seen at optical wavelengths. Here we report the optical detection of AT2022cmc, a rapidly fading source at cosmological distance (redshift z = 1.19325) the unique light curve of which transitioned into a luminous plateau within days. Observations of a bright counterpart at other wavelengths, including X-ray, submillimetre and radio, supports the interpretation of AT2022cmc as a jetted TDE containing a synchrotron ‘afterglow’, probably launched by a supermassive black hole with spin greater than approximately 0.3. Using four years of Zwicky Transient Facility10 survey data, we calculate a rate of 0.02+0.04−0.01 Gpc−3 yr−1 for on-axis jetted TDEs on the basis of the luminous, fast-fading red component, thus providing a measurement complementary to the rates derived from X-ray and radio observations11. Correcting for the beaming angle effects, this rate confirms that approximately 1 per cent of TDEs have relativistic jets. Optical surveys can use AT2022cmc as a prototype to unveil a population of jetted TDEs.
Original languageEnglish
JournalNature
Volume612
Pages (from-to)430–434
ISSN1476-4687
DOIs
Publication statusPublished - 2022

Bibliographical note

Please note publisher correction: https://doi.org/10.1038/s41586-023-05699-0

Fingerprint

Dive into the research topics of 'A very luminous jet from the disruption of a star by a massive black hole'. Together they form a unique fingerprint.
  • Publisher Correction: A very luminous jet from the disruption of a star by a massive black hole

    Andreoni, I., Coughlin, M. W., Perley, D. A., Yao, Y., Lu, W., Cenko, S. B., Kumar, H., Anand, S., Ho, A. Y. Q., Kasliwal, M. M., de Ugarte Postigo, A., Sagués-Carracedo, A., Schulze, S., Kann, D. A., Kulkarni, S. R., Sollerman, J., Tanvir, N., Rest, A., Izzo, L. & Somalwar, J. J. & 61 others, Kaplan, D. L., Ahumada, T., Anupama, G. C., Auchettl, K., Barway, S., Bellm, E. C., Bhalerao, V., Bloom, J. S., Bremer, M., Bulla, M., Burns, E., Campana, S., Chandra, P., Charalampopoulos, P., Cooke, J., D’Elia, V., Das, K. K., Dobie, D., Fernández, J. F. A., Freeburn, J., Fremling, C., Gezari, S., Goode, S., Graham, M. J., Hammerstein, E., Karambelkar, V. R., Kilpatrick, C. D., Kool, E. C., Krips, M., Laher, R. R., Leloudas, G., Levan, A., Lundquist, M. J., Mahabal, A. A., Medford, M. S., Miller, M. C., Möller, A., Mooley, K. P., Nayana, A. J., Nir, G., Pang, P. T. H., Paraskeva, E., Perley, R. A., Petitpas, G., Pursiainen, M., Ravi, V., Ridden-Harper, R., Riddle, R., Rigault, M., Rodriguez, A. C., Rusholme, B., Sharma, Y., Smith, I. A., Stein, R. D., Thöne, C., Tohuvavohu, A., Valdes, F., van Roestel, J., Vergani, S. D., Wang, Q. & Zhang, J., 2023, In: Nature. 613, E6.

    Research output: Contribution to journalComment/debateCommunication

Cite this