A variable probe pitch micro-Hall effect method

Maria-Louise Witthøft*, Frederik W. Østerberg, Janusz Bogdanowicz, Rong Lin, Henrik H. Henrichsen, Ole Hansen, Dirch Hjorth Petersen

*Corresponding author for this work

    Research output: Contribution to journalJournal articleResearchpeer-review

    300 Downloads (Pure)


    Hall effect metrology is important for a detailed characterization of the electronic properties of new materials for nanoscale electronics. The micro-Hall effect (MHE) method, based on micro four-point probes, enables a fast characterization of ultrathin films with minimal sample preparation. Here, we study in detail how the analysis of raw measurement data affects the accuracy of extracted key sample parameters, i.e., how the standard deviation on sheet resistance, carrier mobility and Hall sheet carrier density is affected by the data analysis used. We compare two methods, based primarily on either the sheet resistance signals or the Hall resistance signals, by theoretically analysing the effects of electrode position errors and electrical noise on the standard deviations. We verify the findings with a set of experimental data measured on an ultrashallow junction silicon sample. We find that in presence of significant electrical noise, lower standard deviation is always obtained when the geometrical analysis is based on the sheet resistance signals. The situation is more complicated when electrode position errors are dominant; in that case, the better method depends on the experimental conditions, i.e., the distance between the insulating boundary and the electrodes. Improvement to the accuracy of Hall Effect measurement results is crucial for nanoscale metrology, since surface scattering often leads to low carrier mobility.
    Original languageEnglish
    JournalBeilstein Journal of Nanotechnology
    Pages (from-to)2032-2039
    Publication statusPublished - 2018


    • Four-point probes
    • Hall effect
    • Metrology
    • Mobility
    • Variable Probe Pitch

    Fingerprint Dive into the research topics of 'A variable probe pitch micro-Hall effect method'. Together they form a unique fingerprint.

    Cite this