TY - JOUR
T1 - A theoretical and experimental analysis of modulated laser fields and power spectra
AU - Olesen, Henning
AU - Jacobsen, G.
N1 - Copyright 1982 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
PY - 1982
Y1 - 1982
N2 - A general theoretical description of modulated laser fields and power spectra for a current modulated single-mode laser is derived, taking into account both the intensity and frequency modulation (IM and FM) of the emitted light. The theory relies on an explicit knowledge of the modulus as well as the phase of the current-to-frequency modulation transfer function for the laser. Numerical examples are presented for sinusoidal, sawtooth, and square wave modulation considering broad-band and narrow-band FM cases with various amounts of IM. The IM causes a significant distortion of the pure FM spectrum, strongly dependent on the modulus and the phase of the current-to-frequency modulation transfer function. In general, it causes the FM spectrum to become asymmetrical with a change of the relative sideband level. The theoretical results have been confirmed experimentally by Fabry-Perot interferometer measurements on a temperature stabilized CSP injection laser. In the interpretation of the measurement results, the detailed characteristics of the interferometer, and the detection system are taken into account. The measurements include narrow-band and broad-band sinusoidal modulation as well as broad-band saw-tooth and square wave modulation.
AB - A general theoretical description of modulated laser fields and power spectra for a current modulated single-mode laser is derived, taking into account both the intensity and frequency modulation (IM and FM) of the emitted light. The theory relies on an explicit knowledge of the modulus as well as the phase of the current-to-frequency modulation transfer function for the laser. Numerical examples are presented for sinusoidal, sawtooth, and square wave modulation considering broad-band and narrow-band FM cases with various amounts of IM. The IM causes a significant distortion of the pure FM spectrum, strongly dependent on the modulus and the phase of the current-to-frequency modulation transfer function. In general, it causes the FM spectrum to become asymmetrical with a change of the relative sideband level. The theoretical results have been confirmed experimentally by Fabry-Perot interferometer measurements on a temperature stabilized CSP injection laser. In the interpretation of the measurement results, the detailed characteristics of the interferometer, and the detection system are taken into account. The measurements include narrow-band and broad-band sinusoidal modulation as well as broad-band saw-tooth and square wave modulation.
U2 - 10.1109/JQE.1982.1071490
DO - 10.1109/JQE.1982.1071490
M3 - Journal article
SN - 0018-9197
VL - 18
SP - 2069
EP - 2080
JO - I E E E Journal of Quantum Electronics
JF - I E E E Journal of Quantum Electronics
IS - 12
ER -