A theoretical and experimental analysis of modulated laser fields and power spectra

Henning Olesen, G. Jacobsen

    Research output: Contribution to journalJournal articleResearchpeer-review

    608 Downloads (Pure)

    Abstract

    A general theoretical description of modulated laser fields and power spectra for a current modulated single-mode laser is derived, taking into account both the intensity and frequency modulation (IM and FM) of the emitted light. The theory relies on an explicit knowledge of the modulus as well as the phase of the current-to-frequency modulation transfer function for the laser. Numerical examples are presented for sinusoidal, sawtooth, and square wave modulation considering broad-band and narrow-band FM cases with various amounts of IM. The IM causes a significant distortion of the pure FM spectrum, strongly dependent on the modulus and the phase of the current-to-frequency modulation transfer function. In general, it causes the FM spectrum to become asymmetrical with a change of the relative sideband level. The theoretical results have been confirmed experimentally by Fabry-Perot interferometer measurements on a temperature stabilized CSP injection laser. In the interpretation of the measurement results, the detailed characteristics of the interferometer, and the detection system are taken into account. The measurements include narrow-band and broad-band sinusoidal modulation as well as broad-band saw-tooth and square wave modulation.
    Original languageEnglish
    JournalI E E E Journal of Quantum Electronics
    Volume18
    Issue number12
    Pages (from-to)2069-2080
    ISSN0018-9197
    DOIs
    Publication statusPublished - 1982

    Bibliographical note

    Copyright 1982 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

    Fingerprint

    Dive into the research topics of 'A theoretical and experimental analysis of modulated laser fields and power spectra'. Together they form a unique fingerprint.

    Cite this