A temperature control method for shortening thermal cycling time to achieve rapid polymerase chain reaction (PCR) in a disposable polymer microfluidic device

We present a temperature control method capable of effectively shortening the thermal cycling time of polymerase chain reaction (PCR) in a disposable polymer microfluidic device with an external heater and a temperature sensor. The method employs optimized temperature overshooting and undershooting steps to achieve a rapid ramping between the temperature steps for DNA denaturation, annealing and extension. The temperature dynamics within the microfluidic PCR chamber was characterized and the overshooting and undershooting parameters were optimized using the temperature-dependent fluorescence signal from Rhodamine B. The method was validated with the PCR amplification of mecA gene (162 bp) from methicillin-resistant Staphylococcus aureus bacterium (MRSA), where the time for 30 cycles was reduced from 50 min (without over- and undershooting) to 20 min.

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology, Magnetic Systems, National Food Institute, Division of Food Microbiology, BioLabChip, DELTA - a Part of FORCE Technology
Number of pages: 9
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Journal of Micromechanics and Microengineering
Volume: 23
Issue number: 7
ISSN (Print): 0960-1317
Ratings:
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.74 SJR 0.737 SNIP 1.245
Web of Science (2013): Impact factor 1.725
ISI indexed (2013): ISI indexed yes
Original language: English
DOI: 10.1088/0960-1317/23/7/074002
Source: dtu
Source ID: n:oai:DTIC-ART:iop/388261230::29468
Research output: Contribution to journal › Journal article – Annual report year: 2013 › Research › peer-review