A Technical Economic Evaluation of Inertial Response from Wind Generators and Synchronous Condensers

Ha Thi Nguyen*, Meadhbh Ni Chleirigh, Guangya Yang

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

4 Downloads (Pure)

Abstract

Frequency stability in today's power systems has become more critical than ever due to the growing contribution of renewable energy sources. This situation has arisen because of the electro-mechanical decoupling between renewable generation sources and the main grid caused by their connection through power electronic converters. This paper designs two synthetic inertia controllers that adhere to the grid code requirements from two different countries and then to utilize them to aid in the integration of high levels of wind power penetration in a test power system. The controllers are designed for a full converter wind turbine generator and are validated in an EMT real-time simulation with isolated testing at different wind speeds and different wind power penetration. The role of synchronous inertia in maintaining frequency stability is also explored through the use of synchronous condensers. Finally, the economic aspect of inertia is discussed, using the real-world example of the Bornholm island power system.

Original languageEnglish
Article number9314120
JournalIEEE Access
Volume9
Pages (from-to)7183-7192
ISSN2169-3536
DOIs
Publication statusPublished - 2021

Bibliographical note

Funding Information:
This work was supported in part by Phoenix project, funded by Ofgem under Network Innovation Competition programme, Project Direction ref: SPT/Phoenix/16 December 2016 (https://www.spenergynetworks.co.uk/pages/phoenix.aspx).

Publisher Copyright:
© 2013 IEEE.

Keywords

  • Converter-dominated systems
  • Frequency stability
  • Synchronous condenser
  • Synthetic inertia
  • Wind power plant

Fingerprint Dive into the research topics of 'A Technical Economic Evaluation of Inertial Response from Wind Generators and Synchronous Condensers'. Together they form a unique fingerprint.

Cite this