A study of Cu/ZnO/Al2O3 methanol catalysts prepared by flame combustion synthesis

Joakim Reimer Jensen, Tue Johannessen, Stig Wedel, Hans Livbjerg

Research output: Contribution to journalJournal articleResearchpeer-review


The flame combustion synthesis of Cu/ZnO/Al2O3 catalysts for the synthesis of methanol from CO, CO2 and H2 is investigated. The oxides are generated in a premixed flame from the acetyl-acetonate vapours of Cu, Zn and Al mixed with the fuel and air prior to combustion. The flame-generated powder is examined by X-ray powder diffraction, determination of the specific surface area by the BET-method, determination of the copper dispersion in the reduced catalyst by a novel N2O-method, by transmission electron microscopy, and by test of the catalytic properties in a catalytic micro-reactor. A low peak temperature and quench-cooling of the flame tend to increase the dispersion of the phases and the specific surface area of the particles. Properties of both the ternary composition, the three binary compositions and the pure oxides are discussed. The calculation of simultaneous phase and chemical equilibrium is used in the assessment of the phase composition of the particles. The specific surface area varies from 100 m2/g or a little below for samples without Al to several hundred m2/g for the respective compositions of pure Al2O3 and ZnAl2O4. Copper dispersion after reduction varies from 1.8 to 14.1 %. A ternary catalyst with the composition of Cu:Zn:Al=45:45:10 has the highest catalytic activity of all samples tested. This catalyst is also very selective and stable towards thermal deactivation. The role of the individual catalyst components in the optimal catalyst is discussed.
Original languageEnglish
JournalJournal of Catalysis
Issue number1
Pages (from-to)67-77
Publication statusPublished - 2003

Cite this