A Soluble, Folded Protein without Charged Amino Acid Residues

Research output: Contribution to journalJournal article – Annual report year: 2016Researchpeer-review

Documents

DOI

  • Author: Højgaard, Casper

    University of Copenhagen, Denmark

  • Author: Kofoed, Steen Christian

    University of Copenhagen, Denmark

  • Author: Espersen, Roall

    Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark

  • Author: Johansson, Kristoffer Enøe

    University of Copenhagen, Denmark

  • Author: Villa, Mara

    University of Cologne, Germany

  • Author: Willemoes, Martin

    University of Copenhagen, Denmark

  • Author: Lindorff‐Larsen, Kresten

    University of Copenhagen, Denmark

  • Author: Teilum, Kaare

    University of Copenhagen, Denmark

  • Author: Winther, Jakob R.

    University of Copenhagen, Denmark

View graph of relations

Charges are considered an integral part of protein structure and function, enhancing solubility and providing specificity in molecular interactions. We wished to investigate whether charged amino acids are indeed required for protein biogenesis and whether a protein completely free of titratable side chains can maintain solubility, stability, and function. As a model, we used a cellulose-binding domain from Cellulomonas fimi, which, among proteins of more than 100 amino acids, presently is the least charged in the Protein Data Bank, with a total of only four titratable residues. We find that the protein shows a surprising resilience toward extremes of pH, demonstrating stability and function (cellulose binding) in the pH range from 2 to 11. To ask whether the four charged residues present were required for these properties of this protein, we altered them to nontitratable ones. Remarkably, this chargeless protein is produced reasonably well in :Escherichia coli, retains its stable three-dimensional structure, and is still capable of strong cellulose binding. To further deprive this protein of charges, we removed the N-terminal charge by acetylation and studied the protein at pH 2, where the C-terminus is effectively protonated, Under these conditions, the protein retains its function and proved to be both soluble and have a reversible folding-unfolding transition. To the best of our knowledge, this is the first time a soluble, functional protein with no titratable side chains has been produced.
Original languageEnglish
JournalBiochemistry
Volume55
Issue number28
Pages (from-to)3949-3956
Number of pages8
ISSN0006-2960
DOIs
Publication statusPublished - 2016

Bibliographical note

ACS Editors' Choice - This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

CitationsWeb of Science® Times Cited: No match on DOI

Download statistics

No data available

ID: 128045989