A Soft Tooling Process Chain for Injection Molding of a 3D Component with Micro Pillars

The purpose of this paper is to present the method of a soft tooling process chain employing Additive Manufacturing (AM) for fabrication of injection molding inserts with micro surface features. The Soft Tooling inserts are manufactured by Digital Light Processing (vat photo polymerization) using a photopolymer that can withstand relatively high temperatures. The part manufactured here has four tines with an angle of 60°. Micro pillars (Ø200 μm, aspect ratio of 1) are arranged on the surfaces by two rows. Polyethylene (PE) injection molding with the soft tooling inserts is used to fabricate the final parts. This method demonstrates that it is feasible to obtain injection-molded parts with microstructures on complex geometry by additive manufactured inserts. The machining time and cost is reduced significantly compared to conventional tooling processes based on computer numerical control (CNC) machining. The dimensions of the micro features are influenced by the applied additive manufacturing process. The lifetime of the inserts determines that this process is more suitable for pilot production. The precision of the inserts production is limited by the additive manufacturing process as well.

General information
Publication status: Published
Organisations: Department of Mechanical Engineering, Manufacturing Engineering
Contributors: Zhang, Y., Pedersen, D. B., Mischkot, M., Calaon, M., Baruffi, F., Tosello, G.
Number of pages: 7
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Visualized Experiments
Volume: 138
Article number: e57335
ISSN (Print): 1940-087X
Ratings:
Scopus rating (2018): CiteScore 1.3 SJR 0.665 SNIP 0.442
Web of Science (2018): Impact factor 1.108
Web of Science (2018): Indexed yes
Original language: English
Electronic versions:
 jove_protocol_57335_a_soft_tooling_process_chain_for_injection_molding_3d_component_with.pdf
 10.3791/57335
URLs:
 https://www.jove.com/video/57335/

Bibliographical note
Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License
Source: PublicationPreSubmission
Source-ID: 151875398
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review