A simple analysis of the stable field profile in the supercritical TEA

Palle Jeppesen, B. Jeppsson

    Research output: Contribution to journalJournal articleResearchpeer-review

    466 Downloads (Pure)

    Abstract

    An analytical investigation supported by numerical calculations has been performed of the stable field profile in a supercritical diffusion-stabilized n-GaAs transferred electron amplifier (TEA) with ohmic contacts. In the numerical analysis, the field profile is determined by solving the steady-state continuity and Poisson equations. The diffusion-induced short-circuit stability is checked by performing time-domain computer simulations under constant voltage conditions. The analytical analysis based on simplifying assumptions gives the following results in good agreement with the numerical results. 1) A minimum doping level required for stability exists, which is inversely proportional to the field-independent diffusion coefficient assumed in the simple analysis. 2) The dc current is bias independent and below the threshold value, and the current drop ratio increases slowly and almost linearly with the doping level. 3) The domain width normalized to the diode lengthLvaries almost linearly with(V_{B}/V_{T}-1)^{frac{1}{2}}/(n_{0}L)^{frac{1}{2}}where VBis the bias voltage VTis the threshold voltage, and no is the doping level. 4) The peak domain field varies almost linearly with (V_{B}/V_{T}-1)^{frac{1}{2}} (n_{0}L)^{frac{1}{2}}. Those results contribute to the understanding of the highn_{0}L-product switch and the stability of the supercritical TEA.
    Original languageEnglish
    JournalI E E E Transactions on Electron Devices
    Volume20
    Issue number4
    Pages (from-to)371-379
    ISSN0018-9383
    Publication statusPublished - 1973

    Bibliographical note

    Copyright 1973 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

    Fingerprint

    Dive into the research topics of 'A simple analysis of the stable field profile in the supercritical TEA'. Together they form a unique fingerprint.

    Cite this