A set packing inspired method for real-time junction train routing

Efficiently coordinating the often large number of interdependent, timetabled train movements on a railway junction, while satisfying a number of operational requirements, is one of the most important problems faced by a railway company. The most critical variant of the problem arises on a daily basis at major railway junctions where disruptions to rail traffic make the planned schedule/routing infeasible and rolling stock planners are forced to re-schedule/re-route trains in order to recover feasibility. The dynamic nature of the problem means that good solutions must be obtained quickly. In this paper we describe a set packing inspired formulation of this problem and develop a branch-and-price based solution approach. A real life test instance arising in Germany and supplied by the major German railway company, Deutsche Bahn, indicates the efficiency of the proposed approach by confirming that practical problems can be solved to within a few percent of optimality in reasonable time.

General information
Publication status: Published
Organisations: Department of Management Engineering, Management Science, The University of Auckland
Contributors: Lusby, R. M., Larsen, J., Ehrgott, M., Ryan, D. M.
Pages: 713-724
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Computers & Operations Research
Volume: 40
Issue number: 3
ISSN (Print): 0305-0548
Ratings:
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.62 SJR 2.527 SNIP 2.909
Web of Science (2013): Impact factor 1.718
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Original language: English
Keywords: Train routing, Disruption management, Duality, Optimization
DOIs: 10.1016/j.cor.2011.12.004
Source: dtu
Source-ID: n:oai:DTIC-ART:elsevier/374560256::24905
Research output: Contribution to journal › Journal article – Annual report year: 2013 › Research › peer-review