A Scalable Method for Thickness and Lateral Engineering of 2D Materials

Jianbo Sun, Giacomo Giorgi, Maurizia Palummo, Peter Sutter, Maurizio Passacantando, Luca Camilli*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

The physical properties of two-dimensional (2D) materials depend strongly on the number of layers. Hence, methods for controlling their thickness with atomic layer precision are highly desirable, yet still too rare, and demonstrated for only a limited number of 2D materials. Here we present a simple and scalable method for the continuous layer-by-layer thinning that works for a large class of 2D materials, notably layered germanium pnictides and chalcogenides. It is based on a simple oxidation/etching process, which selectively occurs on the topmost layers. Through a combination of atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and X-ray diffraction experiments we demonstrate the thinning method on germanium arsenide (GeAs), germanium sulfide (GeS) and germanium disulfide (GeS2). We use first-principles simulation to provide insights into the oxidation mechanism. Our strategy, which could be applied to other classes of 2D materials upon proper choice of the oxidation/etching reagent, supports 2D material-based device applications, e.g., in electronics or optoelectronics, where a precise control over the number of layers (hence over the material's physical properties) is needed. Finally, we also show that when used in combination with lithography, our method can be used to make precise patterns in the 2D materials.
Original languageEnglish
JournalACS Nano
Volume14
Issue number4
Pages (from-to)4861-4870
ISSN1936-0851
DOIs
Publication statusPublished - 2020

Keywords

  • 2D materials
  • Oxidation
  • Layer-by-layer thinning
  • GeAs
  • GeS
  • GeS2

Cite this

Sun, J., Giorgi, G., Palummo, M., Sutter, P., Passacantando, M., & Camilli, L. (2020). A Scalable Method for Thickness and Lateral Engineering of 2D Materials. ACS Nano, 14(4), 4861-4870. https://doi.org/10.1021/acsnano.0c00836