A sampling and metagenomic sequencing-based methodology for monitoring antimicrobial resistance in swine herds - DTU Orbit (03/11/2019)

A sampling and metagenomic sequencing-based methodology for monitoring antimicrobial resistance in swine herds

Objectives
Reliable methods for monitoring antimicrobial resistance (AMR) in livestock and other reservoirs are essential to understand the trends, transmission and importance of agricultural resistance. Quantification of AMR is mostly done using culture-based techniques, but metagenomic read mapping shows promise for quantitative resistance monitoring.

Methods
We evaluated the ability of: (i) MIC determination for Escherichia coli; (ii) cfu counting of E. coli; (iii) cfu counting of aerobic bacteria; and (iv) metagenomic shotgun sequencing to predict expected tetracycline resistance based on known antimicrobial consumption in 10 Danish integrated slaughter pig herds. In addition, we evaluated whether fresh or manure floor samples constitute suitable proxies for intestinal sampling, using cfu counting, qPCR and metagenomic shotgun sequencing.

Results
Metagenomic read-mapping outperformed cultivation-based techniques in terms of predicting expected tetracycline resistance based on antimicrobial consumption. Our metagenomic approach had sufficient resolution to detect antimicrobial-induced changes to individual resistance gene abundances. Pen floor manure samples were found to represent rectal samples well when analysed using metagenomics, as they contain the same DNA with the exception of a few contaminating taxa that proliferate in the extraintestinal environment.

Conclusions
We present a workflow, from sampling to interpretation, showing how resistance monitoring can be carried out in swine herds using a metagenomic approach. We propose metagenomic sequencing should be part of routine livestock resistance monitoring programmes and potentially of integrated One Health monitoring in all reservoirs.

General information
Publication status: Published
Organisations: National Food Institute, Research group for Genomic Epidemiology, National Veterinary Institute, Section for Bacteriology, Pathology and Parasitology
Number of pages: 8
Pages: 385-392
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Journal of Antimicrobial Chemotherapy
Volume: 72
Article number: dwk415
ISSN (Print): 0305-7453
Ratings:
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.21 SJR 2.283 SNIP 1.542
Web of Science (2016): Impact factor 5.071
Web of Science (2016): Indexed yes
Original language: English
Electronic versions:
ANSA_dkw415.pdf
DOI:
10.1093/jac/dkw415
Source: FindIt
Source ID: 2348795971
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review