A Roadmap for Transforming Research to Invent the Batteries of the Future Designed within the European Large Scale Research Initiative BATTERY 2030+

Julia Amici, Pietro Asinari, Elixabete Ayerbe, Philippe Barboux, Pascale Bayle‐Guillemaud, R. Jürgen Behm, Maitane Berecibar, Erik Berg, Arghya Bhowmik, Silvia Bodoardo, Ivano E. Castelli, Isidora Cekic‐Laskovic, Rune Christensen, Simon Clark, Ralf Diehm, Robert Dominko, Maximilian Fichtner, Alejandro A. Franco, Alexis Grimaud, Nicolas GuilletMaria Hahlin, Sarah Hartmann, Vincent Heiries, Kersti Hermansson, Andreas Heuer, Saibal Jana, Lara Jabbour, Josef Kallo, Arnulf Latz, Henning Lorrmann, Ole Martin Løvvik, Sandrine Lyonnard, Marcel Meeus, Elie Paillard, Simon Perraud, Tobias Placke, Christian Punckt, Olivier Raccurt, Janna Ruhland, Edel Sheridan, Helge Stein, Jean‐Marie Tarascon, Victor Trapp, Tejs Vegge, Marcel Weil, Wolfgang Wenzel*, Martin Winter, Andreas Wolf, Kristina Edström*

*Corresponding author for this work

Research output: Contribution to journalReviewResearchpeer-review

16 Downloads (Pure)

Abstract

This roadmap presents the transformational research ideas proposed by “BATTERY 2030+,” the European large-scale research initiative for future battery chemistries. A “chemistry-neutral” roadmap to advance battery research, particularly at low technology readiness levels, is outlined, with a time horizon of more than ten years. The roadmap is centered around six themes: 1) accelerated materials discovery platform, 2) battery interface genome, with the integration of smart functionalities such as 3) sensing and 4) self-healing processes. Beyond chemistry related aspects also include crosscutting research regarding 5) manufacturability and 6) recyclability. This roadmap should be seen as an enabling complement to the global battery roadmaps which focus on expected ultrahigh battery performance, especially for the future of transport. Batteries are used in many applications and are considered to be one technology necessary to reach the climate goals. Currently the market is dominated by lithium-ion batteries, which perform well, but despite new generations coming in the near future, they will soon approach their performance limits. Without major breakthroughs, battery performance and production requirements will not be sufficient to enable the building of a climate-neutral society. Through this “chemistry neutral” approach a generic toolbox transforming the way batteries are developed, designed and manufactured, will be created.
Original languageEnglish
Article number2102785
JournalAdvanced Energy Materials
Number of pages42
ISSN1614-6832
DOIs
Publication statusAccepted/In press - 2022

Fingerprint

Dive into the research topics of 'A Roadmap for Transforming Research to Invent the Batteries of the Future Designed within the European Large Scale Research Initiative BATTERY 2030+'. Together they form a unique fingerprint.

Cite this