Abstract
The safety of robotics and automation technologies is a significant concern for stakeholders in Industry 5.0. Ensuring cost-effectiveness and inherent safety requires applying the defense-in-depth principle. This paper introduces a novel risk-informed design framework for functional safety, integrating function-centered hazard identification and risk assessment via fault tree analysis (FTA). Demonstrated in the design of a semi-automated agricultural vehicle, the framework begins with a function-centered hazard identification approach (F-CHIA) based on ISO 12100. It examined design intents, identified hazard zones, and conducted task and function identification. Foreseeable functional hazardous situations are analyzed, leading to functional requirements and the identification of relevant directives, regulations, and standards. The F-CHIA outputs inform the functional safety analysis, assessing the required performance level and deriving specific requirements for software, hardware, and human operators using FTA. The functional requirements derived from F-CHIA are more systematic than traditional methods and serve as effective inputs for functional safety analysis in human–robot collaboration applications. The proposed framework enables design teams to focus on enhancing factors that improve functional safety performance levels, resulting in a more thorough and effective safety design process.
Original language | English |
---|---|
Article number | 11010024 |
Journal | Safety |
Volume | 11 |
Issue number | 24 |
Number of pages | 31 |
DOIs | |
Publication status | Published - 2025 |
Keywords
- Risk-informed design
- Hazard identification
- Risk assessment
- Functional safety
- Robotics and automation systems