Abstract
Wind farm layout optimization in complex terrain is a pretty difficult issue for onshore wind farm. In this article, a novel optimization method is proposed to optimize the layout for wind farms in complex terrain. This method utilized Lissaman and Jensen wake models for taking the terrain height and the wake loss from the upstream turbines into the wind turbine power output calculation. Wind direction is divided into sixteen sections, and the wind speed is processed using the Weibull distribution. The objective is to maximize the total wind farm power output and the free design variables are the wind turbines’ park coordinates which subject to the boundary and minimum distance conditions between two wind turbines. A Cross Particle Swarm Optimization (CPSO) method is developed and applied to optimize the layout for a certain wind farm case. Compared with the uniform and experience method, results show that the CPSO method has a higher optimal value, and could be used to optimize the actual wind farm micro-sitting engineering projects.
Original language | English |
---|---|
Title of host publication | Proceedings of the 2013 International Conference on aerodynamics of Offshore Wind Energy Systems and wakes (ICOWES2013) |
Editors | WenZhong Shen |
Publisher | Technical University of Denmark |
Publication date | 2013 |
Pages | 669-679 |
Publication status | Published - 2013 |
Event | International Conference on aerodynamics of Offshore Wind Energy Systems and wakes (ICOWES 2013) - Lyngby, Denmark Duration: 17 Jun 2013 → 19 Jun 2013 |
Conference
Conference | International Conference on aerodynamics of Offshore Wind Energy Systems and wakes (ICOWES 2013) |
---|---|
Country/Territory | Denmark |
City | Lyngby |
Period | 17/06/2013 → 19/06/2013 |
Keywords
- Wind farm micro-sitting
- Complex terrain
- Wake model
- Probability density
- Cross particle swarm optimization (CPSO)