A regularization method for solving the Poisson equation for mixed unbounded-periodic domains

Abstract
Regularized Green’s functions for mixed unbounded-periodic domains are derived. The regularization of the Green’s function removes its singularity by introducing a regularization radius which is related to the discretization length and hence imposes a minimum resolved scale. In this way the regularized unbounded-periodic Green’s functions can be implemented in an FFT-based Poisson solver to obtain a convergence rate corresponding to the regularization order of the Green’s function. The high order is achieved without any additional computational cost from the conventional FFT-based Poisson solver and enables the calculation of the derivative of the solution to the same high order by direct spectral differentiation. We illustrate an application of the FFT-based Poisson solver by using it with a vortex particle mesh method for the approximation of incompressible flow for a problem with a single periodic and two unbounded directions.

General information
Publication status: Published
Organisations: Department of Mechanical Engineering, Fluid Mechanics, Coastal and Maritime Engineering
Corresponding author: Spietz, H. J.
Contributors: Spietz, H. J., Mølholm Hejlesen, M., Walther, J. H.
Pages: 439–447
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Computational Physics
Volume: 356
ISSN (Print): 0021-9991
Ratings:
BFI (2018): BFI-level 1
Scopus rating (2018): CiteScore 3.31 SJR 1.643 SNIP 1.737
Web of Science (2018): Impact factor 2.845
Web of Science (2018): Indexed yes
Original language: English
Keywords: The Poisson equation, Unbounded and periodic domains, Mixed boundary conditions, Regularization methods, Green's function solution, Vortex methods
DOIs: 10.1016/j.jcp.2017.12.018
Source: RIS
Source ID: urn:C7004E8695A5FDF9BD23F8EEF4D3D502
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review