Abstract
This paper investigates the feasibility of reducing a model-checking problem K ⊧ ϕ for discrete time Duration Calculus to the decision problem for Presburger Arithmetic. Theoretical results point at severe limitations of this approach: (1) the reduction in Fränzle and Hansen (Int J Softw Inform 3(2–3):171–196, 2009) produces Presburger formulas whose sizes grow exponentially in the chop-depth of ϕ, where chop is an interval modality originating from Moszkowski (IEEE Comput 18(2):10–19, 1985), and (2) the decision problem for Presburger Arithmetic has a double exponential lower bound and a triple exponential upper bound. The generated Presburger formulas have a rich Boolean structure, many quantifiers and quantifier alternations. Such formulas are simplified using so-called guarded formulas, where a guard provides a context used to simplify the rest of the formula. A normal form for guarded formulas supports global effects of local simplifications. Combined with quantifier-elimination techniques, this normalization gives significant reductions in formula sizes and in the number of quantifiers. As an example, we solve a configuration problem using the SMT-solver Z3 as backend. Benefits and the current limits of the approach are illustrated by a family of examples.
Original language | English |
---|---|
Journal | Annals of Mathematics and Artificial Intelligence |
Volume | 71 |
Issue number | 1-3 |
Pages (from-to) | 251-278 |
ISSN | 1012-2443 |
DOIs | |
Publication status | Published - 2014 |
Keywords
- Interval temporal logic
- Duration Calculus
- Model checking
- Presburger Arithmetic