A Practical Approach to FMCW Radar Deconvolution in the Sea Ice Domain

Thomas Newman*, Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, James Mead, Robbie Mallett, Michel Tsamados, Marcus Huntemann, Stefan Hendricks, Gunnar Spreen, Rasmus Tonboe

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

This paper presents a practical step-by-step approach to Frequency Modulated Continuous Wave (FMCW) radar nonlinearity correction (deconvolution), utilizing surface-based Ku- and Ka-band radar data collected over nilas ice within a newly-opened sea ice lead during the 2019/2020 MOSAiC expedition. Two performance metrics are introduced to evaluate deconvolution effectiveness: the spurious free dynamic range (SFDR), which quantifies sidelobe suppression, and the leading edge width (LEW), which quantifies the improvement in surface return clarity. The impact of deconvolution waveforms on different survey dates, radar polarizations, and surface types is examined using echograms and quantitative metrics. Deconvolution results in a maximum SFDR increase of 28 dB, with a maximum 3 dB decline in deconvolution performance observed over an 8-day period and a maximum decline of 15 dB observed over a 71-day period. The LEW values indicate that the effectiveness of deconvolution in enhancing interface clarity depends on the combination of pre-deconvolution sidelobe shape, prominence of the surface return, the influence of snowpack returns, as well as a time-dependent reduction in deconvolution performance. Deconvolution significantly improves surface return clarity for cross-polarized radar data, where weak surface returns are obscured by returns from within the snowpack. The results demonstrate that deconvolution performance is most effective shortly after deconvolution waveform characterization. Therefore, it is recommended to perform at least weekly calibrations using a large metal sheet and ideally calibration before/after data collection to ensure optimal deconvolution performance and effective sidelobe suppression.
Original languageEnglish
JournalIEEE Access
Volume12
Pages (from-to)174901-174933
ISSN2169-3536
DOIs
Publication statusPublished - 2024

Keywords

  • Arctic
  • Deconvolution
  • Frequency Modulated Continuous Wave (FMCW)
  • MOSAiC expedition
  • Nonlinearity correction
  • Polarimetry
  • Radar
  • Sea ice
  • Snow
  • Surface-based radar

Fingerprint

Dive into the research topics of 'A Practical Approach to FMCW Radar Deconvolution in the Sea Ice Domain'. Together they form a unique fingerprint.

Cite this